
V4L2 Stateless Video Encoding uAPI

Paul Kocialkowski
paulk@sys-base.io

Linux Media Summit
Tuesday May 13th 2025



Stateless Video Codecs

Types of hardware video codecs:
• Stateful: driven by a dedicated microcontroller

• Abstracted commands via mailbox interface for (proprietary) firmware
• Limited control and decisions
• Easier to use but low flexibility
• Often wrapping stateless codecs

• Stateless: driven by the main processor
• Register-level configuration
• Low-level control and advanced decisions
• More involved but high flexibility

V4L2 support:
• Stateful encoders and decoders: using V4L2 controls (simple) and M2M API
• Stateless decoders: using V4L2 controls (compound), M2M and Media Request APIs
• Stateless encoders: missing upstream support

2/16



Stateless Video Encoding

Main challenges:
• Decide of all encode parameters

• Codec features
• Quality vs size trade-off
• Reference frame management for inter-prediction
• Account for (variable) hardware limitations: features, reference slots, etc

• Implement rate control
• Closed-loop regulation for each strategy
• Assisted by generic and hardware-specific statistics
• Possibly assisted by hardware-specific mechanisms
• Possibly using external feedback/analysis (e.g. ML)

• Generate (valid and consistent) bitstream headers
• Manage memory not visible to userspace

• Reconstruction buffers for references
• Various scratch/metadata buffers (e.g. motion vectors)

3/16



Concerned Hardware and Formats

Applicable hardware:
• VeriSilicon Hantro H1/H2/VC8000E
• Allwinner Video Engine
• Rockchip RKVENC VEPU510/VEPU540/VEPU580
• Stateful designs with pass-through firmware?

Relevant video codec formats:
• H.264/AVC: main target of interest
• H.265/HEVC: common
• VP8, VP9: common
• AV1: recent

4/16



Linux uAPI Attempts

• 2021: Hantro H1 H.264 encoding on PX30/RK3399,
• Paul Kocialkowski, Bootlin
• Userspace-driven, hardware-specific controls

• 2023: Hantro H1 VP8 encoding on RK3399,
• Andrzej Pietrasiewicz, Collabora
• Userspace-driven, hardware-specific controls

• 2023: Allwinner Video Engine H.264 encoding on V3/V3s,
• Paul Kocialkowski, Bootlin
• Kernel-driven, stateful controls

• 2025: Hantro VC8000E H.264 encoding on i.MX8MP,
• Marco Felsch, Pengutronix
• Userspace-driven, hardware-specific controls

5/16



Linux uAPI Attempts Approaches

Userspace-driven:
• Bitstream headers generated by userspace (has to know and apply hardware constraints)
• Hardware-specific parameters and statistics controls
• Userspace rate control decision, lock-step encoding (or latency)
• Little to no decision from the kernel, very flexible
• Involved/complex userspace, implementation not hardware-agnostic

Kernel-driven:
• Bitstream headers generated by the kernel
• Stateful encoder controls
• Kernel rate control decision, no lock-step encoding
• All decisions from the kernel, not flexible
• Wastes all advantages of stateless
• Hardware-agnostic, simple userspace

6/16



Existing Userspace APIs

Vendor-specific libraries:
• Very low-level, control over most encode parameters and hardware features
• Bluntly refuse unsupported cases
• Stateful proprietary rate control strategy with hints

VA-API
• Low-level encode parameters, explicit reference list
• Some codec capabilities reporting (e.g. reference limitations)
• Stateful rate control strategy with hints

Vulkan Video
• Low-level encode parameters, explicit reference list
• Some codec capabilities reporting (e.g. reference limitations)
• Allows encode parameters and reference override
• Stateful rate control strategy with hints

7/16



Design Goals

Desirable uAPI design:
• Fully hardware-agnostic
• Leverage and expose low-level aspect of stateless encoders
• Compatible with VA-API and Vulkan Video
• Work without lock-step encoding
• Covering all expected use cases:

• Camera source recording
• Camera streaming (RTP, RTCP RPSI, WebRTC)
• Offline transcoding and storage (bi-directional prediction)

Acceptable downsides:
• Involved/complex userspace implementations (few in practice)

8/16



Proposed Path: Overview

Userspace side:
• Decides the low-level encode parameters

including frame type (may have extra relevant info)
• Based on capability reporting?
• Decides the reference list explicitly
• Selects rate control strategy and provides hints
• Follows common stateless encoder specification

Kernel side:
• Adapts parameters and references based on hardware capabilities
• Returns actually selected parameters and references

provided as read-only controls attached to media request

9/16



Proposed Path: Encode Parameters

Possible approaches:
• Using existing controls (stateful encoders):

• Implicit (presence) and explicit (value) capability reporting
• Missing some parameters (e.g. frame type)

• Using flat compound controls (stateless decoders):
• Cover most codec headers
• No capability reporting

10/16



Proposed Path: References

Userspace side:
• Flat global list of possible references (e.g. H.264 DPB)
• Per-frame list of active references (e.g. H.264 L0/L1)
• Frames marked as possible reference when submitted

Kernel side:
• May need to apply reference list management operations
• May need to discard some references to match hardware constraints
• May benefit from decorelation with V4L2 queue

11/16



Proposed Path: Rate Control

Userspace side:
• Select rate control strategy (using existing stateful controls)
• Provide hints about GOP structure (reusing existing stateful controls)

Kernel side:
• Generic and common implementations for various strategies

• Tracking accumulated bitstream size
• Detecting actual frame type patterns
• Complying to HRD, VBV and level constraints (with frame drops?)
• Estimating quantization parameter

• Final decision and tweaking by drivers,
allowing hardware-specific statistics and optimizations

12/16



Proposed Path: Bitstream Generation

Kernel side:
• Generic codec-specific helpers (e.g. exponential-Golomb)
• Ingesting bitstream headers flat structures (from controls)
• Calling I/O hooks for buffer append

• Generic using virtual memory access
• Driver-specific using hardware mechanisms

• Also relevant for some stateful encoder drivers (e.g. Allegro-DVT)

13/16



Extensions/Future Planning

Specific extra features of interest:
• Interlaced encoding (probably H.264 only)
• Slice-granularity encoding
• Scalable coding (H.264 SVC, SHVC)
• Custom kernel-side rate control with eBPF?

Implementation notes:
• Typically added with extra V4L2 controls
• Not within scope for immediate focus
• Beware of incompatible choices

14/16



Involved Parties and Timeline

Informal working group:
• Benjamin Gaignard, Collabora
• Marco Felsch, Pengrutronix
• Michael Tretter, Pengutronix
• Nicolas Dufresne, Collabora
• Paul Kocialkowski, sys-base
• Let us know if interested!

Timeline Targets:
• First working prototype with GStreamer plugin during summer 2025
• Technical community consensus before 2026

15/16



Takeaway

Summary:
• Most encode parameters are best decided by userspace
• References are best decided by userspace
• Rate control is best decided by the kernel
• Bitstream generation is best done by the kernel
• Kernel drivers need to be able to enforce hardware constraints
• Compatibility with existing userspace APIs is desirable
• Various aspects and details are still open to discussion

16/16


