
Make camera controls state-aware & streams-aware

Current state of V4L2 controls :-)

• Controls for a video device (/dev/video0) like a UVC camera

• Controls for a subdev device (/dev/v4l-subdev0) like CSI-2 sensor, bridge or ISP

• Can’t specify pad or stream, all controls are for the whole device

• Single struct v4l2_ctrl_handler for the device

• Same IOCTL for both video and subdev devices:

int ioctl(int fd, VIDIOC_S_CTRL, struct v4l2_control *argp)

struct v4l2_control {

 __u32 id;

 __s32 value;

};

• Both subdev and device ioctl calls trigger drivers/media/v4l2-core/v4l2-ctrls-api.c: v4l2_g_ctrl() :

drivers/media/v4l2-core/v4l2-ioctl.c|2363 col 10-21| return v4l2_g_ctrl(vfd->ctrl_handler, p);

drivers/media/v4l2-core/v4l2-subdev.c|669 col 10-21| return v4l2_g_ctrl(vfh->ctrl_handler, arg);

which does a cached lookup through the linked list of controls defined in struct v4l2_ctrl_handler

• Video device already supports a per-filehandle control handler, which is used by applica�ons for subscribing to V4L2 events on

a per-filehandle basis

h�ps://lore.kernel.org/linux-media/1307459123-17810-1-git-send-email-hverkuil@xs4all.nl/

• Nothing similar exists for subdev devices

Mo�va�on

Why state-aware?

• For “trying” controls on a subdev along with formats

◦ Eg. HFLIP and VFLIP can affect the allowed bayer pa�erns

• For atomic updates across the media graph (mul�-context ISP support)

◦ Also need: struct video_device_state {}

Why streams-aware?

• For sensors that transmit mul�ple pixel streams with different exposure and gain that need to be controlled separately, for eg.

A/B mode RGB-Ir sensors like OV2312, OX05B1S

Any other usecases?

Proposal

• Introduce new IOCTL, which matches VIDIOC_SUBDEV_[GS]_FMT :

https://lore.kernel.org/linux-media/1307459123-17810-1-git-send-email-hverkuil@xs4all.nl/
https://lore.kernel.org/linux-media/1307459123-17810-1-git-send-email-hverkuil@xs4all.nl/

ioctl(fd, VIDIOC_SUBDEV_S_CTRL, struct v4l2_subdev_control *argp)

struct v4l2_subdev_control {

/* control id and value */

 __u32 id;

 __s32 value;

/* whence -> enum: CONTROL_TRY or CONTROL_ACTIVE */

 __u32 which;

/* pad and stream */

 __u32 pad;

 __u32 stream;

/* drivers and applications must zero this array */

 __u32 reserved[x];

};

• Store mul�ple v4l2_ctrl_handler inside subdev state, for each pad/stream:

struct v4l2_subdev_state {

/* ... */

struct v4l2_subdev_pad_config *pads;

struct v4l2_subdev_krouting routing;

struct v4l2_subdev_stream_configs stream_configs;

/* Control configuration for each pad/stream */

struct v4l2_subdev_ctrl_configs ctrl_configs;

};

struct v4l2_subdev_ctrl_configs {

 u32 num_configs;

struct v4l2_subdev_ctrl_config *configs;

};

struct v4l2_subdev_ctrl_config {

 u32 pad;

 u32 stream;

 bool enabled;

/* Per-stream control handler */

struct v4l2_ctrl_handler *ctrl_handler;

};

Known unknowns

• Should the new controls be per-pad or per-stream?

◦ Per-pad could work if it is mandatory to use internal pads for each stream on source devices. But on intermediary

subdevs you won’t be able to control on a per-stream basis.

• Not all controls make sense for a per-pad basis, for example link frequency.

• Is the new ioctl API (for trying controls) also useful for video devices? Or is that already covered by the per-filehandle control

handler?

Unknown unknowns…?

