
 _
+-/ \-+
| (o) |
+-----+

Multi-context support
in V4L2

Media-summit 2025
Nice

Jacopo Mondi

jacopo.mondi@ideasonboard.com

(Some) ISPs are time-multiplexed devices

● Resources are multiplexed at the HW or FW level and some ISP
processes images in tiles

● ISPs can handle streams from different camera inputs by
alternating ‘contexts’

ISP time multiplexing

ISP time multiplexing

ISP

time

Params Params

Media graph multiplexing

Sensor A
/dev/v4l-subdev0

0

0
Debayer A

/dev/v4l-subdev2
1

Raw Capture 0
/dev/video0

Lens A
/dev/v4l-subdev5

0
Scaler

/dev/v4l-subdev5
1

Sensor B
/dev/v4l-subdev1

0

0
Debayer B

/dev/v4l-subdev3
1

Raw Capture 1
/dev/video1

Lens B
/dev/v4l-subdev6

RGB/YUV Capture
/dev/video2

RGB/YUV Input
/dev/v4l-subdev4

0

Sensor A
/dev/v4l-subdev0

0

0
Debayer A

/dev/v4l-subdev2
1

Raw Capture 0
/dev/video0

Lens A
/dev/v4l-subdev5

0
Scaler

/dev/v4l-subdev5
1

Sensor B
/dev/v4l-subdev1

0

0
Debayer B

/dev/v4l-subdev3
1

Raw Capture 1
/dev/video1

Lens B
/dev/v4l-subdev6

RGB/YUV Capture
/dev/video2

RGB/YUV Input
/dev/v4l-subdev4

0

V4L2 Driver

ISP

Introducing contexts

Params

Params

} Context 1

} Context 2

Contexts:

● Execution contexts stacked on a single instance of a media graph

● Isolated at the process level

● Associates in an isolated environment:
● Video Devices
● V4L2 Subdevices (todo)
● Media device links state (todo)

Introducing contexts

Media contexts

● Types:
● Media device context (MC)

● Media entity context (MC)
● Video device context (V4L2)
● V4L2 subdevice context (V4L2)

● IOCTLs
● VIDIOC_BIND_CONTEXT
● VIDIOC_SUBDEV_BIND_CONTEXT (todo)

Media contexts: key design elements

Media entity context
● Refcounted
● Linked in the contexts list of struct media_device_context

Video device context
● Referenced by struct v4l2-fh
● Extends media entity context
● Stores struct vb2_queue

V4L2 subdevice context (todo)
● Referenced from struct v4l2-subdev-fh
● Extends media entity context
● Stores v4l2_subdev_state

Media entity context

The uAPI: VIDIOC_BIND_CONTEXT

VIDIOC_BIND_CONTEXT(media_fd)
VIDIOC_SUBDEV_BIND_CONTEXT(media_fd)

● Create a video_device_context

● Add it to the list of contexts in media_device_context

● Stores a reference to in the struct v4l2-fh

The uAPI: VIDIOC_BIND_CONTEXT

VIDIOC_BIND_CONTEXT(media_fd)

The uAPI: VIDIOC_BIND_CONTEXT

VIDIOC_BIND_CONTEXT(media_fd)

Since Vienna 2024

Rebased:

● Still depends on Sakari’s lifetime management series
● Mostly for the introduction of “struct media_device_fh”

There is plan to continue working on this:

● Originally implemented on RPi5: still a target

● A second ISP driver will be targeted
● Time allocated to work on this in the next months

Open questions (from last year)

V4l2 Controls (not for today)

● I’m no expert there and I don’t know if this is possible or even
desirable

m2m context

● Should the two be unified ?

men2mem context

Let’s have a recap of the types

mem2mem context

Let’s have a recap of the types

mem2mem context

Both types have a vb2_queue

Inheriting from struct media_entity_context gives
free reference counting

But what about the media device context and
bounding ?

Open questions

mem2mem and media contexts

● mem2mem is about tying together an OUTPUT and a CAPTURE
queue on a single video device

● Media context is about bounding together different video devices
and subdevices and associate them with a media device context

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

 board n00000001 Sensor A /dev/v4l-subdev0 0 n00000005 0 Debayer A /dev/v4l-subdev2 1 n00000001:port0->n00000005:port0 n0000000b Raw Capture 0 /dev/video0 n00000001:port0->n0000000b n00000002 Lens A /dev/v4l-subdev5 n00000001->n00000002 n00000015 0 Scaler /dev/v4l-subdev5 1 n00000005:port1->n00000015:port0 n00000003 Sensor B /dev/v4l-subdev1 0 n00000008 0 Debayer B /dev/v4l-subdev3 1 n00000003:port0->n00000008:port0 n0000000f Raw Capture 1 /dev/video1 n00000003:port0->n0000000f n00000004 Lens B /dev/v4l-subdev6 n00000003->n00000004 n00000008:port1->n00000015:port0 n00000018 RGB/YUV Capture /dev/video2 n00000015:port1->n00000018 n00000013 RGB/YUV Input /dev/v4l-subdev4 0 n00000013:port0->n00000015:port0 board n00000001 Sensor A /dev/v4l-subdev0 0 n00000005 0 Debayer A /dev/v4l-subdev2 1 n00000001:port0->n00000005:port0 n0000000b Raw Capture 0 /dev/video0 n00000001:port0->n0000000b n00000002 Lens A /dev/v4l-subdev5 n00000001->n00000002 n00000015 0 Scaler /dev/v4l-subdev5 1 n00000005:port1->n00000015:port0 n00000003 Sensor B /dev/v4l-subdev1 0 n00000008 0 Debayer B /dev/v4l-subdev3 1 n00000003:port0->n00000008:port0 n0000000f Raw Capture 1 /dev/video1 n00000003:port0->n0000000f n00000004 Lens B /dev/v4l-subdev6 n00000003->n00000004 n00000008:port1->n00000015:port0 n00000018 RGB/YUV Capture /dev/video2 n00000015:port1->n00000018 n00000013 RGB/YUV Input /dev/v4l-subdev4 0 n00000013:port0->n00000015:port0 V4L2 Driver ISP

 _

+-/ \-+

| (o) |

+-----+

Multi-context support

in V4L2

Media-summit 2025

Nice

Jacopo Mondi

jacopo.mondi@ideasonboard.com

Hello everybody, and welcome to this presentation about libcamera. For those of you who are lucky enough to join us live from Seattle today, thank you for waking up early. This is the first slot of the day, so I know how difficult it can be.

My name is Laurent Pinchart. I’m the chief architect and project manager of libcamera. Today I’m going to take you on libcamera’s fabulous journey.

So let’s dive in the subject.

(Some) ISPs are time-multiplexed devices

		Resources are multiplexed at the HW or FW level and some ISP processes images in tiles

		ISPs can handle streams from different camera inputs by alternating ‘contexts’

ISP time multiplexing

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

ISP time multiplexing

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

Media graph multiplexing

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

Introducing contexts

boardlibcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

Contexts:

		 Execution contexts stacked on a single instance of a media graph

		 Isolated at the process level

		 Associates in an isolated environment:

		Video Devices

		V4L2 Subdevices (todo)

		Media device links state (todo)

Introducing contexts

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

Media contexts

		 Types:

		Media device context (MC)

		 Media entity context (MC)

		Video device context	(V4L2)

		V4L2 subdevice context (V4L2)

		 IOCTLs

		 VIDIOC_BIND_CONTEXT

		VIDIOC_SUBDEV_BIND_CONTEXT (todo)

Media contexts: key design elements

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

Media entity context

		 Refcounted

		 Linked in the contexts list of struct media_device_context

Video device context

		 Referenced by struct v4l2-fh

		 Extends media entity context

		 Stores struct vb2_queue

V4L2 subdevice context (todo)

		 Referenced from struct v4l2-subdev-fh

		 Extends media entity context

		 Stores v4l2_subdev_state

Media entity context

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

The uAPI: VIDIOC_BIND_CONTEXT

VIDIOC_BIND_CONTEXT(media_fd)

VIDIOC_SUBDEV_BIND_CONTEXT(media_fd)

		 Create a video_device_context

		 Add it to the list of contexts in media_device_context

		 Stores a reference to in the struct v4l2-fh

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

The uAPI: VIDIOC_BIND_CONTEXT

VIDIOC_BIND_CONTEXT(media_fd)

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

The uAPI: VIDIOC_BIND_CONTEXT

VIDIOC_BIND_CONTEXT(media_fd)

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

Since Vienna 2024

Rebased:

				Still depends on Sakari’s lifetime management series

		Mostly for the introduction of “struct media_device_fh”

There is plan to continue working on this:

				Originally implemented on RPi5: still a target

		A second ISP driver will be targeted

		Time allocated to work on this in the next months

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

Open questions (from last year)

V4l2 Controls (not for today)

				I’m no expert there and I don’t know if this is possible or even desirable

m2m context

				Should the two be unified ?

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

men2mem context

Let’s have a recap of the types

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

mem2mem context

Let’s have a recap of the types

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

mem2mem context

Both types have a vb2_queue

Inheriting from struct media_entity_context gives

free reference counting

But what about the media device context and

bounding ?

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

Open questions

mem2mem and media contexts

				mem2mem is about tying together an OUTPUT and a CAPTURE queue on a single video device

		Media context is about bounding together different video devices and subdevices and associate them with a media device context

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

 board n00000001 Sensor A /dev/v4l-subdev0 0 n00000005 0 Debayer A /dev/v4l-subdev2 1 n00000001:port0->n00000005:port0 n0000000b Raw Capture 0 /dev/video0 n00000001:port0->n0000000b n00000002 Lens A /dev/v4l-subdev5 n00000001->n00000002 n00000015 0 Scaler /dev/v4l-subdev5 1 n00000005:port1->n00000015:port0 n00000003 Sensor B /dev/v4l-subdev1 0 n00000008 0 Debayer B /dev/v4l-subdev3 1 n00000003:port0->n00000008:port0 n0000000f Raw Capture 1 /dev/video1 n00000003:port0->n0000000f n00000004 Lens B /dev/v4l-subdev6 n00000003->n00000004 n00000008:port1->n00000015:port0 n00000018 RGB/YUV Capture /dev/video2 n00000015:port1->n00000018 n00000013 RGB/YUV Input /dev/v4l-subdev4 0 n00000013:port0->n00000015:port0 n00000001 Sensor A /dev/v4l-subdev0 0 n00000005 0 Debayer A /dev/v4l-subdev2 1 n00000001:port0->n00000005:port0 n0000000b Raw Capture 0 /dev/video0 n00000001:port0->n0000000b n00000002 Lens A /dev/v4l-subdev5 n00000001->n00000002 n00000015 0 Scaler /dev/v4l-subdev5 1 n00000005:port1->n00000015:port0 n00000003 Sensor B /dev/v4l-subdev1 0 n00000008 0 Debayer B /dev/v4l-subdev3 1 n00000003:port0->n00000008:port0 n0000000f Raw Capture 1 /dev/video1 n00000003:port0->n0000000f n00000004 Lens B /dev/v4l-subdev6 n00000003->n00000004 n00000008:port1->n00000015:port0 n00000018 RGB/YUV Capture /dev/video2 n00000015:port1->n00000018 n00000013 RGB/YUV Input /dev/v4l-subdev4 0 n00000013:port0->n00000015:port0 n00000001 Sensor A /dev/v4l-subdev0 0 n00000005 0 Debayer A /dev/v4l-subdev2 1 n00000001:port0->n00000005:port0 n0000000b Raw Capture 0 /dev/video0 n00000001:port0->n0000000b n00000002 Lens A /dev/v4l-subdev5 n00000001->n00000002 n00000015 0 Scaler /dev/v4l-subdev5 1 n00000005:port1->n00000015:port0 n00000003 Sensor B /dev/v4l-subdev1 0 n00000008 0 Debayer B /dev/v4l-subdev3 1 n00000003:port0->n00000008:port0 n0000000f Raw Capture 1 /dev/video1 n00000003:port0->n0000000f n00000004 Lens B /dev/v4l-subdev6 n00000003->n00000004 n00000008:port1->n00000015:port0 n00000018 RGB/YUV Capture /dev/video2 n00000015:port1->n00000018 n00000013 RGB/YUV Input /dev/v4l-subdev4 0 n00000013:port0->n00000015:port0 Params Params } Context 1 } Context 2

 ISP time Params Params

		Click to edit the outline text format

		Second Outline Level

		Third Outline Level

		Fourth Outline Level

		Fifth Outline Level

		Sixth Outline Level

		Seventh Outline Level

		Eighth Outline Level

		Ninth Outline Level

Keep Out

		Click to edit the outline text format

		Second Outline Level

		Third Outline Level

		Fourth Outline Level

		Fifth Outline Level

		Sixth Outline Level

		Seventh Outline Level

		Eighth Outline Level

		Ninth Outline Level

