Google

videobuf2 in 2024

Current state, limitations and path forward

C Media Summit 2024 > Tomasz Figa <tfiga@chromium.org> ~ Sep2024

O1

Current state
aka recap of recent changes

Removed the fixed 32 buffer limit

Kudos to Benjamin (Collabora) and everyone involved.

e No more statically sized array of vb2_ buffer

e Nodirect access to buffer array or size - only via helpers

e vb2 buffer * used instead of index across vb2 helpers

e Default is still 32 buffers - easy override via vb2_queue struct field
ML archive:

https://lore.kernel.org/linux-media/20231109163008.179152-1-benjamin.gaignard@coll

abora.com/

https://lore.kernel.org/linux-media/20231109163008.179152-1-benjamin.gaignard@collabora.com/
https://lore.kernel.org/linux-media/20231109163008.179152-1-benjamin.gaignard@collabora.com/

Added buffer removal

Kudos to Benjamin (Collabora) and everyone involved.

e New VIDIOC_REMOVE_BUFS ioctl deletes a given range of buffers (indexes)
from a buffer queue
e Drivers can opt-in by setting the .vidioc_remove_bufs op to
vb2_ioctl_remove_bufs()
o Code must not hold vb2_buffer pointers outside of driver’s buffer
ownership
e The buffers must be in the DEQUEUED state

ML archive:

https://lore.kernel.org/linux-media/20240314153226.197445-1-benjamin.gaignard@col

labora.com/

https://lore.kernel.org/linux-media/20240314153226.197445-1-benjamin.gaignard@collabora.com/
https://lore.kernel.org/linux-media/20240314153226.197445-1-benjamin.gaignard@collabora.com/

Optimized DMA-buf plane mapping

Kudos to Yunke (Google, ChromeOS) and everyone involved.

e Re-use mem_priv between planes if they import the same DMA-buf
e Eliminates unnecessary DMA mapping operations and waste of IOVA space
e Note: Only works within one buffer
o If another vb2_buffer has the same DMA-buf imported to it, it will have
its own duplicated DMA mapping

ML archive:

https://lore.kernel.org/linux-media/20240814020643.2229637-1-yunkec@chromium.o
ra/

https://lore.kernel.org/linux-media/20240814020643.2229637-1-yunkec@chromium.org/
https://lore.kernel.org/linux-media/20240814020643.2229637-1-yunkec@chromium.org/

02

Limitations
aka room for improvement

Drivers that need CPU access to buffers

e Sharing buffers between CPU and DMA requires proper memory coherence via for

example

o CPU cache maintenance (invalidate, clean)

o coherent memory (uncached/write-combine mapping)
e What does the framework provide today?

Buf_type / allocator

MMAP

USERPTR

DMABUF

vb2-dma-sg

cache maint. in
buf prepare/_finish

cache maint. in
buf prepare/_finish

nothing

vb2-dma-contig

coherent memory
OR

cache maint. in
buf_prepare/_finish

cache maint. in
buf_prepare/_finish

nothing

vb2-vmalloc

only CPU access

only CPU access

nothing

Drivers that need CPU access to buffers, cont'd

e DMA-buf provides dma_buf_begin_cpu_access() and dma_buf end_cpu_access() to

transfer the ownership to/away from the CPU
e ~30drivers [1] don’t do any CPU cache synchronization for imported DMA-buf despite
accessing them from the CPU

Idea:
e Addvb2 {begin/end} cpu_access() helpers, carefully audit each driver and add calls
to those around the CPU accesses
o Note: Would only affect DMABUF mode, so low potential for regression (and
probably already broken)
o Tomasz will work on an RFC

[1]
https://lore.kernel.org/linux-media/CAAFQd5DfbgOkZzPfCNRMGeMgv2NfM6WENWXeL UNs
uMgkzeBQKw@mail.gmail.com/

https://elixir.bootlin.com/linux/v6.10.10/source/drivers/dma-buf/dma-buf.c#L1405
https://elixir.bootlin.com/linux/v6.10.10/C/ident/dma_buf_end_cpu_access
https://lore.kernel.org/linux-media/CAAFQd5DfbqOkZzPfCNRMGeMgv2NfM6WENWXeLUNsuMgkzeBQKw@mail.gmail.com/
https://lore.kernel.org/linux-media/CAAFQd5DfbqOkZzPfCNRMGeMgv2NfM6WENWXeLUNsuMgkzeBQKw@mail.gmail.com/
https://lore.kernel.org/linux-media/CAAFQd5DfbqOkZzPfCNRMGeMgv2NfM6WENWXeLUNsuMgkzeBQKw@mail.gmail.com/

Page allocation in vb2-dma-sg

e vb2-dma-sg has its own allocation of pages for MMAP buffers
o vb2 dma_sg_alloc_compacted()
e Limitations:
o alloc_pages() does not account for DMA constraints (e.g. DMA mask)
m dma_alloc_pages() does
o notusing _GFP_NORETRY, which will trigger costly reclaim if there are
no big order free pages at hand
e DMA mapping already has similar code backing dma_alloc_coherent() and
dma_alloc_noncontiguous()

|dea:
e Extend dma_alloc_noncontiguous() to accept maximum number of sg_table
segments (suggested by Christoph Hellwig [1])
o Tomasz will collaborate with DMA maintainers to see if this could happen
e Side effect: The same allocation function could be used for both sg and contig
o Could we merge them into a single vb2-dma?

[1] https://lore.kernel.org/linux-media/20230926094616.GA14877@Ist.de/

https://elixir.bootlin.com/linux/v6.11/source/drivers/media/common/videobuf2/videobuf2-dma-sg.c#L60
https://lore.kernel.org/linux-media/20230926094616.GA14877@lst.de/

DMABUF buffer mapping lifetime

e VB2 attaches and maps a DMA-buf when the buffer at the given index is being
prepared
o The mapping for the buffer index is kept until a different DMA-buf is
queued or the index is removed (e.g. via REQBUFS or REMOVE_BUFS)
e Problematic scenarios:
o Video codecs can use dequeued CAPTURE buffers as reference frames,
but they could be unmapped if the application queues a different
DMA-buf at the same buffer index
o Wasteful repetitive maps and unmaps if the application doesn’t strictly
match buffer indexes and DMA-bufs

|dea:
e Decouple physical buffer storage from the position in the queue

o Sounds much easier than done. Tomasz is still thinking about the exact
proposal

Duplicate DMA mappings

|deas:

Queuing the same DMA-buf at different indexes of the same vb2 queue or to
different vb2 queues of the same device leads to duplicate DMA mappings
being created
Example: A complex ISP device with multiple processing blocks where the same
output is used as input of multiple other processing blocks
Example 2: Application keeps a pool of buffers around to avoid allocation cost,
but they don’t end up always used for the same video nodes
Example 3: The same DMA-buf is queued with different offsets at different
V4L2 indexes

o Very convenient to use a ring buffer-like pattern to deal with

compressed data, as the frame size varies heavily

Could possibly be handled at the DMA API level by looking up and refcounting
existing mappings with matching attributes

03
Other improvements

Can locking be simplified?

e Videobuf2 locking patterns tend to be perceived as overly complex by
developers
o mmap_lock (mutex)
done_lock (spinlock)
vb2_queue->lock (mutex)
media_request->lock (spinlock)
media_request_(un)lock_for update (helpers)
wait_prepare/_finish (helpers)
o VA4L2video _dev lock (mutex)
e History of timing bugs detected via fuzzing
e How do we make sure that the locking is understandable and remains correct
going forward?
e Request for ideas!

o O O O O

ldea: Remove .wait_prepare/_finish

e Could we enforce the locking in the framework and remove the custom
unlocking callbacks?

First step: Drop the custom callbacks for most drivers (patches by Hans [1])
e What are the use cases for custom locking?

[1] https://lore.kernel.org/linux-media/cover.1725285495.qit.hverkuil-cisco@xs4all.nl/

https://lore.kernel.org/linux-media/cover.1725285495.git.hverkuil-cisco@xs4all.nl/

|dea: More documentation

e Create a dedicated htmldoc page for vb2 locking
e Are there any useful annotation macros that could be added to the code to
document what’s guarded by which locks?

Misc clean-up ideas

e Simplify USERPTR code
o After removing support for PENMAP the frame_vector abstraction is not
useful anymore.
e Reducing boilerplate
o Returning all buffers when stopping streaming
m We ultimately only need the driver to just make sure the buffers
are not in-use anymore.
m Would need to keep around a list of buffers owned by the driver.
o Queue setup
m All drivers implement pretty much the same thing, but with their
own little bugs all around.
e Anything else?

Thank you!

