
Tomasz Figa <tfiga@chromium.org> Sep 2024Media Summit 2024

videobuf2 in 2024
Current state, limitations and path forward

Current state
aka recap of recent changes

01

Kudos to Benjamin (Collabora) and everyone involved.

● No more statically sized array of vb2_buffer
● No direct access to buffer array or size - only via helpers
● vb2_buffer * used instead of index across vb2 helpers
● Default is still 32 buffers - easy override via vb2_queue struct field

ML archive:
https://lore.kernel.org/linux-media/20231109163008.179152-1-benjamin.gaignard@coll
abora.com/

Removed the fixed 32 buffer limit

https://lore.kernel.org/linux-media/20231109163008.179152-1-benjamin.gaignard@collabora.com/
https://lore.kernel.org/linux-media/20231109163008.179152-1-benjamin.gaignard@collabora.com/

Kudos to Benjamin (Collabora) and everyone involved.

● New VIDIOC_REMOVE_BUFS ioctl deletes a given range of buffers (indexes)
from a buffer queue

● Drivers can opt-in by setting the .vidioc_remove_bufs op to
vb2_ioctl_remove_bufs()
○ Code must not hold vb2_buffer pointers outside of driver’s buffer

ownership
● The buffers must be in the DEQUEUED state

ML archive:
https://lore.kernel.org/linux-media/20240314153226.197445-1-benjamin.gaignard@col
labora.com/

Added buffer removal

https://lore.kernel.org/linux-media/20240314153226.197445-1-benjamin.gaignard@collabora.com/
https://lore.kernel.org/linux-media/20240314153226.197445-1-benjamin.gaignard@collabora.com/

Kudos to Yunke (Google, ChromeOS) and everyone involved.

● Re-use mem_priv between planes if they import the same DMA-buf
● Eliminates unnecessary DMA mapping operations and waste of IOVA space
● Note: Only works within one buffer

○ If another vb2_buffer has the same DMA-buf imported to it, it will have
its own duplicated DMA mapping

ML archive:
https://lore.kernel.org/linux-media/20240814020643.2229637-1-yunkec@chromium.o
rg/

Optimized DMA-buf plane mapping

https://lore.kernel.org/linux-media/20240814020643.2229637-1-yunkec@chromium.org/
https://lore.kernel.org/linux-media/20240814020643.2229637-1-yunkec@chromium.org/

Limitations
aka room for improvement

02

● Sharing buffers between CPU and DMA requires proper memory coherence via for
example
○ CPU cache maintenance (invalidate, clean)
○ coherent memory (uncached/write-combine mapping)

● What does the framework provide today?

Drivers that need CPU access to buffers

Buf_type / allocator vb2-dma-sg vb2-dma-contig vb2-vmalloc

MMAP cache maint. in
buf_prepare/_finish

coherent memory
OR
cache maint. in
buf_prepare/_finish

only CPU access

USERPTR cache maint. in
buf_prepare/_finish

cache maint. in
buf_prepare/_finish

only CPU access

DMABUF nothing nothing nothing

● DMA-buf provides dma_buf_begin_cpu_access() and dma_buf_end_cpu_access() to
transfer the ownership to/away from the CPU

● ~30 drivers [1] don’t do any CPU cache synchronization for imported DMA-buf despite
accessing them from the CPU

Idea:
● Add vb2_{begin/end}_cpu_access() helpers, carefully audit each driver and add calls

to those around the CPU accesses
○ Note: Would only affect DMABUF mode, so low potential for regression (and

probably already broken)
○ Tomasz will work on an RFC

[1]
https://lore.kernel.org/linux-media/CAAFQd5DfbqOkZzPfCNRMGeMgv2NfM6WENWXeLUNs
uMgkzeBQKw@mail.gmail.com/

Drivers that need CPU access to buffers, cont’d

https://elixir.bootlin.com/linux/v6.10.10/source/drivers/dma-buf/dma-buf.c#L1405
https://elixir.bootlin.com/linux/v6.10.10/C/ident/dma_buf_end_cpu_access
https://lore.kernel.org/linux-media/CAAFQd5DfbqOkZzPfCNRMGeMgv2NfM6WENWXeLUNsuMgkzeBQKw@mail.gmail.com/
https://lore.kernel.org/linux-media/CAAFQd5DfbqOkZzPfCNRMGeMgv2NfM6WENWXeLUNsuMgkzeBQKw@mail.gmail.com/
https://lore.kernel.org/linux-media/CAAFQd5DfbqOkZzPfCNRMGeMgv2NfM6WENWXeLUNsuMgkzeBQKw@mail.gmail.com/

● vb2-dma-sg has its own allocation of pages for MMAP buffers
○ vb2_dma_sg_alloc_compacted()

● Limitations:
○ alloc_pages() does not account for DMA constraints (e.g. DMA mask)

■ dma_alloc_pages() does
○ not using __GFP_NORETRY, which will trigger costly reclaim if there are

no big order free pages at hand
● DMA mapping already has similar code backing dma_alloc_coherent() and

dma_alloc_noncontiguous()

Idea:
● Extend dma_alloc_noncontiguous() to accept maximum number of sg_table

segments (suggested by Christoph Hellwig [1])
○ Tomasz will collaborate with DMA maintainers to see if this could happen

● Side effect: The same allocation function could be used for both sg and contig
○ Could we merge them into a single vb2-dma?

[1] https://lore.kernel.org/linux-media/20230926094616.GA14877@lst.de/

Page allocation in vb2-dma-sg

https://elixir.bootlin.com/linux/v6.11/source/drivers/media/common/videobuf2/videobuf2-dma-sg.c#L60
https://lore.kernel.org/linux-media/20230926094616.GA14877@lst.de/

● VB2 attaches and maps a DMA-buf when the buffer at the given index is being
prepared
○ The mapping for the buffer index is kept until a different DMA-buf is

queued or the index is removed (e.g. via REQBUFS or REMOVE_BUFS)
● Problematic scenarios:

○ Video codecs can use dequeued CAPTURE buffers as reference frames,
but they could be unmapped if the application queues a different
DMA-buf at the same buffer index

○ Wasteful repetitive maps and unmaps if the application doesn’t strictly
match buffer indexes and DMA-bufs

Idea:
● Decouple physical buffer storage from the position in the queue

○ Sounds much easier than done. Tomasz is still thinking about the exact
proposal

DMABUF buffer mapping lifetime

● Queuing the same DMA-buf at different indexes of the same vb2 queue or to
different vb2 queues of the same device leads to duplicate DMA mappings
being created

● Example: A complex ISP device with multiple processing blocks where the same
output is used as input of multiple other processing blocks

● Example 2: Application keeps a pool of buffers around to avoid allocation cost,
but they don’t end up always used for the same video nodes

● Example 3: The same DMA-buf is queued with different offsets at different
V4L2 indexes
○ Very convenient to use a ring buffer-like pattern to deal with

compressed data, as the frame size varies heavily

Ideas:
● Could possibly be handled at the DMA API level by looking up and refcounting

existing mappings with matching attributes

Duplicate DMA mappings

Other improvements
03

● Videobuf2 locking patterns tend to be perceived as overly complex by
developers
○ mmap_lock (mutex)
○ done_lock (spinlock)
○ vb2_queue->lock (mutex)
○ media_request->lock (spinlock)
○ media_request_(un)lock_for_update (helpers)
○ wait_prepare/_finish (helpers)
○ V4L2 video_dev lock (mutex)

● History of timing bugs detected via fuzzing
● How do we make sure that the locking is understandable and remains correct

going forward?
● Request for ideas!

Can locking be simplified?

● Could we enforce the locking in the framework and remove the custom
unlocking callbacks?

● First step: Drop the custom callbacks for most drivers (patches by Hans [1])
● What are the use cases for custom locking?

[1] https://lore.kernel.org/linux-media/cover.1725285495.git.hverkuil-cisco@xs4all.nl/

Idea: Remove .wait_prepare/_finish

https://lore.kernel.org/linux-media/cover.1725285495.git.hverkuil-cisco@xs4all.nl/

● Create a dedicated htmldoc page for vb2 locking
● Are there any useful annotation macros that could be added to the code to

document what’s guarded by which locks?

Idea: More documentation

● Simplify USERPTR code
○ After removing support for PFNMAP the frame_vector abstraction is not

useful anymore.
● Reducing boilerplate

○ Returning all buffers when stopping streaming
■ We ultimately only need the driver to just make sure the buffers

are not in-use anymore.
■ Would need to keep around a list of buffers owned by the driver.

○ Queue setup
■ All drivers implement pretty much the same thing, but with their

own little bugs all around.
● Anything else?

Misc clean-up ideas

Thank you!

