
1

Giving Rust a chance 
for in-kernel codecs

Daniel Almeida
Consultant Software Engineer
Collabora



2

Brief recap
● Codec drivers ingest a lot of data from userspace

● Previous intentions were to write a driver

● A driver would need a layer of bindings



3



4



5



6

Feedback from last year
● Who maintains what?

● This will slow down development in C

● This may break C code

● The community is overwhelmed



7

What if we could write Rust code 
without bindings?



8

We can do so by converting a 
few functions at a time



9

This would sidestep most of the 
issues raised last year!



10

● Generate machine code that can be called from C

● Make it so the linker can find it

● Can be used as an entry point to call other Rust code



11

● We don’t want this: _RNvNtCs1234_7mycrate3foo3bar
– So no generics,

– No closures

– No namespacing

– No methods, etc.



12

● We need this to be callable from C, hence “extern C”

● Rustc will give us the machine code for the symbol.

● That’s it really, the linker will happily comply.



13

● The public API is then rewritten as per above

● But we need a way to expose the new API to C somehow.

● Because...



14

● This works.

● But it is not a good idea.

● It can quickly get out of sync.

● Nasty bugs can creep if we are not careful.



15

No worries, there’s a tool



16

Cbindgen

● Cbindgen can automatically generate a C header
– Keeps things in sync

– Ensure proper type layout and ABI

● Avoids link errors and/or subtle bugs

● Maintained by Mozilla



17

Cbindgen

● If a function takes arguments, cbindgen will generate 
equivalent C structs

● This works because of #[repr(C)]



18

#include the header, that’s it.



19

Potential targets
● This type of conversion works best when:

– There is a self-contained component

– That exposes a small public API

● For video4linux, this means:

– Codec libraries

– Codec parsers



20

Codec libraries
● Codec algorithms that run on the CPU

● Results are fed back to the hardware

● Abstracted so drivers can rely on a single implementation

● Very self-contained



21

Rewriting the VP9 library
● Two drivers were converted 

● There is a testing tool

● We got the exact same score when running the tool

● Relatively pain-free process



22

New proposals:



23

Proposals
● Merge the code

● Gate it behind a KCONFIG

● Users get the C implementation by default

● Run the Rust implementation on a CI

● Eventually deprecate the C implementation



24

Thoughts?



25

Thank you!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

