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Brief recap
● Codec drivers ingest a lot of data from userspace

● Previous intentions were to write a driver

● A driver would need a layer of bindings
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Feedback from last year
● Who maintains what?

● This will slow down development in C

● This may break C code

● The community is overwhelmed
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What if we could write Rust code 
without bindings?
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We can do so by converting a 
few functions at a time
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This would sidestep most of the 
issues raised last year!



10

● Generate machine code that can be called from C

● Make it so the linker can find it

● Can be used as an entry point to call other Rust code
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● We don’t want this: _RNvNtCs1234_7mycrate3foo3bar
– So no generics,

– No closures

– No namespacing

– No methods, etc.
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● We need this to be callable from C, hence “extern C”

● Rustc will give us the machine code for the symbol.

● That’s it really, the linker will happily comply.
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● The public API is then rewritten as per above

● But we need a way to expose the new API to C somehow.

● Because...
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● This works.

● But it is not a good idea.

● It can quickly get out of sync.

● Nasty bugs can creep if we are not careful.
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No worries, there’s a tool
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Cbindgen

● Cbindgen can automatically generate a C header
– Keeps things in sync

– Ensure proper type layout and ABI

● Avoids link errors and/or subtle bugs

● Maintained by Mozilla
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Cbindgen

● If a function takes arguments, cbindgen will generate 
equivalent C structs

● This works because of #[repr(C)]
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#include the header, that’s it.
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Potential targets
● This type of conversion works best when:

– There is a self-contained component

– That exposes a small public API

● For video4linux, this means:

– Codec libraries

– Codec parsers



20

Codec libraries
● Codec algorithms that run on the CPU

● Results are fed back to the hardware

● Abstracted so drivers can rely on a single implementation

● Very self-contained
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Rewriting the VP9 library
● Two drivers were converted 

● There is a testing tool

● We got the exact same score when running the tool

● Relatively pain-free process
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New proposals:
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Proposals
● Merge the code

● Gate it behind a KCONFIG

● Users get the C implementation by default

● Run the Rust implementation on a CI

● Eventually deprecate the C implementation
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Thoughts?
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Thank you!
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