Giving Rust a chance
for in-kernel codecs

Daniel Almeida
Consultant Software Engineer
Collabora

’O COLLABORA Open FirSt

1



Brief recap

* Codec drivers ingest a lot of data from userspace
* Previous intentions were to write a driver

* Adriver would need a layer of bindings

’O COLLABORA Open FirSt

2



The Most Dangerous Codec in the World:
Finding and Exploiting Vulnerabilities in H.264 Decoders

Willy R. Vasquez Stephen Checkoway Hovav Shacham
The University of Texas at Austin Oberlin College The University of Texas at Austin

’O COLLABORA Open First



Abstract

Modern video encoding standards such as H.264 are a marvel
of hidden complexity. But with hidden complexity comes
hidden security risk. Decoding video in practice means in-
teracting with dedicated hardware accelerators and the pro-
prietary, privileged software components used to drive them.
The video decoder ecosystem is obscure, opaque, diverse,
highly privileged, largely untested, and highly exposed—a
dangerous combination.

We introduce and evaluate H26 FORGE, domain-specific
infrastructure for analyzing, generating, and manipulating syn-
tactically correct but semantically spec-non-compliant video
files. Using H26FORGE, we uncover insecurity in depth
across the video decoder ecosystem, including kernel memory
corruption bugs in i0OS, memory corruption bugs in Firefox
and VLC for Windows, and video accelerator and application
processor kernel memory bugs in multiple Android devices.

’O COLLABORA Open First




In the second case study, we played a larger corpus of
random H26FORGE-generated videos on a variety of Win-
dows software and Android systems from many dated but still
relevant vendors. In all, we 1dentified a memory corruption
vulnerability in Firefox video playback; a use-after-free in
hardware-accelerated VLC video playback; and insecurity
in depth across the hardware decoder ecosystem, including
disclosure of uninitialized memory and of prior decoder state;
accelerator memory corruption; and kernel driver memory
corruption and crashes.

’O COLLABORA Open First

5



Feedback from last year

°* Who maintains what?
* This will slow down developmentinC
* This may break C code

* The community is overwhelmed

’O COLLABORA Open FirSt

6



COLLABORA
»O

What if we could write Rust code
without bindings?



COLLABORA
»O

We can do so by converting a
few functions at a time



COLLABORA
»O

This would sidestep most of the
Issues raised last year!



#Hno_mangle]

pub extern "C" fn call_me_from_c()

° Generate machine code that can be called from C
° Make it so the linker can find it

* Can be used as an entry point to call other Rust code

’O COLLABORA Open First

10



#Hno_mangle]

pub extern "C" fn call_me_from_c()

* We don’t want this: _RNvNtCs1234_7mycrate3foo3bar

— So no generics,
— Noclosures
- No namespacing

— No methods, etc.

’O COLLABORA Open First

N



#Hno_mangle]

pub extern "C" fn call_me_from_c()

° We need this to be callable from C, hence “extern C”
* Rustc will give us the machine code for the symbol.

* That's it really, the linker will happily comply.

’O COLLABORA Open First

12



#H{ no_mangle]

pub extern "C" fn call_me_from_c()

° The public API is then rewritten as per above
° But we need a way to expose the new APl to C somehow.

°* Because..

’O COLLABORA Open First

13



void call_me_from_c();

This works.
°* Butitis not a good idea.

* It can quickly get out of sync.

Nasty bugs can creep if we are not careful.

’O COLLABORA Open First

14



COLLABORA
»O

No worries, there’s a tool

15



Cbindgen

* Cbindgen can automatically generate a C header
~— Keeps things in sync

— Ensure proper type layout and ABI

* Avoids link errors and/or subtle bugs

* Maintained by Mozilla

’O COLLABORA Open FirSt

16



Cbindgen

* If a function takes arguments, cbindgen will generate
equivalent C structs

* This works because of #[repr(C)]

’O COLLABORA Open FirSt

17



COLLABORA
»O

#Hinclude the header, that’s it.



Potential targets

* This type of conversion works best when:
— There is a self-contained component
— That exposes a small public API

* Forvideo4linux, this means:
— Codec libraries

— Codec parsers

’O COLLABORA Open FirSt

19



Codec libraries
* Codec algorithms that run on the CPU

* Results are fed back to the hardware
* Abstracted so drivers can rely on a single implementation

* Very self-contained

’O COLLABORA Open FirSt

20



Rewriting the VP9 library

°* Two drivers were converted

* There is a testing tool

We got the exact same score when running the tool

Relatively pain-free process

’O COLLABORA Open FirSt

21



COLLABORA
»O

New proposals:

22



Proposals

* Merge the code

* Gate it behind a KCONFIG

* Users get the C implementation by default
* Run the Rust implementation on a Cli

* Eventually deprecate the C implementation

’O COLLABORA Open FirSt

23



COLLABORA
»O

Thoughts?



O

Thank you!

’O COLLABORA Open FirSt

25



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

