
 _
+-/ \-+
| (o) |
+-----+

Multi-context support
in V4L2

Media-summit 2024
Vienna

Jacopo Mondi
Laurent Pinchart

jacopo.mondi@ideasonboard.com

(Some) ISPs are time-multiplexed devices

● Resources are multiplexed at the HW or FW level and some ISP
processes images in tiles

● ISPs can handle streams from different camera inputs by
alternating ‘contexts’

ISP time multiplexing

ISP time multiplexing

ISP

time

Params Params

The problem has traditionally been solved by registering multiple
instances of the same media graph

● One ISP instance in the system, one driver instance bound to it,
multiple media graph instances (with many video device and
subdevice devnodes)

● Applications are ‘tricked’ into thinking of dealing with a dedicated
instance of the ISP

● Can this scale ?

Media graph multiplexing

Media graph multiplexing

Sensor A
/dev/v4l-subdev0

0

0
Debayer A

/dev/v4l-subdev2
1

Raw Capture 0
/dev/video0

Lens A
/dev/v4l-subdev5

0
Scaler

/dev/v4l-subdev5
1

Sensor B
/dev/v4l-subdev1

0

0
Debayer B

/dev/v4l-subdev3
1

Raw Capture 1
/dev/video1

Lens B
/dev/v4l-subdev6

RGB/YUV Capture
/dev/video2

RGB/YUV Input
/dev/v4l-subdev4

0

Sensor A
/dev/v4l-subdev0

0

0
Debayer A

/dev/v4l-subdev2
1

Raw Capture 0
/dev/video0

Lens A
/dev/v4l-subdev5

0
Scaler

/dev/v4l-subdev5
1

Sensor B
/dev/v4l-subdev1

0

0
Debayer B

/dev/v4l-subdev3
1

Raw Capture 1
/dev/video1

Lens B
/dev/v4l-subdev6

RGB/YUV Capture
/dev/video2

RGB/YUV Input
/dev/v4l-subdev4

0

V4L2 Driver

ISP

Introducing contexts

Params

Params

} Context 1

} Context 2

Contexts:

● Execution contexts stacked on a single instance of a media graph

● Isolated at the process level

● Associates in an isolated environment:
● Video Devices
● V4L2 Subdevices (todo)
● Media device links state (todo)

Introducing contexts

Media contexts

● Types:
● Media device context (MC)

● Media entity context (MC)
● Video device context (V4L2)
● V4L2 subdevice context (V4L2)

● IOCTLs
● VIDIOC_BIND_CONTEXT

● VIDIOC_SUBDEV_BIND_CONTEXT (todo)

Media contexts: key design elements

Media device context

media device

media device context
media_device_fh

media device context
media_device_fh

struct list_head contexts;
struct kref refcount;
topology (todo)

struct list_head contexts;
struct kref refcount;
topology (todo)

media device context
media_device_fh

struct list_head contexts;
struct kref refcount;
topology (todo)

open()

media_ops.alloc_context()

Media device context

● Created at media device open time
● Refcounted
● Referenced by media-fh

● Stores a list of struct media_entity_contexts

● Drivers can extend it

Media device context

Media device context

Drivers can extend the media_device_context

Media entity context media entity context
kref refcount
list_entry

video device context

media entity context
vdev
v2b_queue
queue_lock

v4l2 subdev context

media entity context
v4l2_subdev
v4l2_subdev_state

media entity context
struct kref refcount;
struct list_head;

video device context

struct media_entity_context base;
struct video_device *vdev;
struct v2b_queue queue;

v4l2 subdev context

struct media_entity_context base;
struct v4l2_subdevice *sd;
struct v4l2_subdev_state state;

media device context
struct list_head contexts;
struct kref refcount;
topology (todo)

Media entity context
● Refcounted
● Linked in the contexts list of struct media_device_context

Video device context
● Referenced by struct v4l2-fh
● Extends media entity context
● Stores struct vb2_queue

V4L2 subdevice context (todo)
● Referenced from struct v4l2-subdev-fh
● Extends media entity context
● Stores v4l2_subdev_state

Media entity context

Drivers can extend the media entity context

Media entity context

The uAPI: VIDIOC_BIND_CONTEXT

VIDIOC_BIND_CONTEXT(media_fd)

● Create a video_device_context

● Add it to the list of contexts in media_device_context

● Stores a reference to in the struct v4l2-fh

The uAPI: VIDIOC_BIND_CONTEXT

VIDIOC_BIND_CONTEXT(media_fd)

The uAPI: VIDIOC_BIND_CONTEXT

VIDIOC_BIND_CONTEXT(media_fd)

Context binding media entity context
kref refcount
list_entry

video device context

media entity context
vdev
v2b_queue
queue_lock

v4l2 subdev context

media entity context
v4l2_subdev
v4l2_subdev_state

media device video device

media device context
media_device_fh v4l2_fh

media entities context list
kref refcount
topology (todo)

context

media_fd = open()

ioctl(video_fd,
 VIDIOC_BIND_CONTEXT,
 { media_fd });

vdev_fd = open();

video device context

media entity context
vdev
v2b_queue
queue_lock

Video device multiplexing

Video device context: multiplexing a video device

● Move the vb2_queue from struct video_device to struct
video_device_context

● The format and the configuration of the video device is moved to the
driver-specific video device context

● Drivers extend struct video_device_context to store the context-
specific information

Video device multiplexing

videobuf2: get the vb2_queue from the context

Video device multiplexing

videobuf2: get the vb2_queue from the context

Drivers API

vb2_ops callbacks

● receive a vb2_queue as argument
● get context from the queue (container_of)

v4l2-ioctl-ops callbacks

● receive a file * as argument
● get context from the open file handle

Internal driver ops

● get contexts for the media entities registered by the driver
associated to the same media device context

Drivers API: video_device_context_get()

video_device_context_get()

● Drivers register multiple video devices and subdevices

● They need to get contexts associated to the same struct
media_device_context *

● video_device_context_get(mdev_context, vdev)
● v4l2_subdev_context_get(mdev_context, sd) (todo)

● Wrappers around media_device_get_entity_context()
● Walk the list of contexts associated in a media device context and

find the one with a matching struct media_entity *

Drivers API: video_device_context_get()

media device context
struct list_head contexts;
struct kref refcount;
topology (todo)

media entity context
struct media_entity *entity;
struct kref refcount;
struct list_head;

media entity context
struct media_entity *entity;
struct kref refcount;
struct list_head;

media entity context
struct media_entity *entity;
struct kref refcount;
struct list_head;

media entity context
struct media_entity *entity;
struct kref refcount;
struct list_head;

struct video_device_context *video_device_context_get(mdev, vdev)
{
 return containre_of(media_device_get_entity_context(mdev,
 &vdev->entity),
 struct video_device_context, base);
}

Additional notes

Default contexts:

● Allows context-aware drivers work with context-aware and non-
context aware userspace

Opt-in:

● Context support is totally opt-in: drivers that do not support
multiplexing does not modified

todos

Per-context media topology

● Move links state to struct media_device_context

Subdevs

● Same design as video devices
● Store reference in stuct subdev-fh
● Associate with a struct media_device_context

● Reuse struct subdev_state as much as possible

Open questions

How to make sure userspace does not mix-up contexts ?

V4l2 Controls

● I’m no expert there and I don’t know if this is possible or even
desirable

m2m context

● Should the two be unified ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

structideo_device context *uideo_device_context_getimdev, vdey)
«

return containre_ofmedi. device get entity contextind,

fra—y
St ok cone, by
)
ol o o |
T
o I
[e
ipogy o) stk et

|
e

suidon.
St

[resz ey come |

ErTr
suidon.
e

(|

e e
e
st

 media device context
 struct list_head contexts; struct kref refcount; topology (todo)

 media entity context
 struct media_entity *entity; struct kref refcount; struct list_head;

 media entity context
 struct media_entity * entity; struct kref refcount; struct list_head;

 media entity context
 struct media_entity *entity; struct kref refcount; struct list_head;

 media entity context
 struct media_entity *entity; struct kref refcount; struct list_head;

 struct video_device_context *video_device_context_get(mdev, vdev) { return containre_of(media_device_get_entity_context(mdev, &vdev-> entity), struct video_device_context, base); }

media device video device

media fd= open) e o
e [
- =
e ;
= loctl(video_fd,
VIDIOC BIND. CONTEXT,
{medifd);
L aesdereecamet
ey
-
e

el

/* vb2 ioctl helpers */

int vb2_ioctl_regbufs(struct file *file, void *priv,
struct v412_requestbuffers *p)
{
struct video_device *vdev = video_devdata(file);
int res = vb2_verify_memory_type(vdev->queue, p->memory, p->type)
struct vb2_queue *q = get_vb2_queue(file, vdev)
int res = vb2_verify_memory_type(q, p->memory, p->type);
u32 flags = p->flags;

£i11_buf_caps (vdev->queue, &p->capabilities);
validate_memory_flags (vdev->queue, p->memory, &flags);
i11_buf_caps(q, &p->capabilities);
validate_memory_flags(q, p->memory, &flags);

 media device

 video device

 media device context

 media_device_fh

 v4l2_fh

 media entities context list kref refcount topology (todo)

 context

 media_fd = open()
 ioctl(video_fd, VIDIOC_BIND_CONTEXT, { media_fd });
 vdev_fd = open();

 video device context
 media entity context vdev v2b_queue queue_lock

/* Create a different context. */
media_fd2 = open("/dev/mediaX", ...);
video_fd2 = open("/dev/videoX", ...);

struct video_device_context c2 = {
.context_fd = media_fd2;
3

ioctl(video_fd2, VIDIOC_BIND_CONTEXT, &c2);

/>
* 'video_fd' and 'video_fd2' operates on different
* contexts.

*/

ioctl(video_fd, VIDIOC_.

ioctl(video_fd2, VIDIOC_

struct media_entity operations {
int (*get_fwnode_pad) (struct media_entity *entity,
struct fwnode_endpoint *endpoint);
int (*link_setup) (struct media_entity *entity,
const struct media_pad *local,
const struct media_pad *remote, u32 flags);
int (*link_validate)(struct media_link *1link);
bool (*has_pad_interdep) (struct media_entity *entity, unsigned int pado,
unsigned int padl);
int (*alloc_context)(struct media_entity *entity,
struct media_entity_context **context);
void (*destroy_context)(struct media_entity_context *context);

 media entity context
 struct kref refcount; struct list_head;

 video device context

 struct media_entity_context base; struct video_device *vdev; struct v2b_queue queue;

 v4l2 subdev context

 struct media_entity_context base; struct v4l2_subdevice *sd; struct v4l2_subdev_state state;

 media device context
 struct list_head contexts; struct kref refcount; topology (todo)

[Fedia entiy context
et
ey
i device context T2 subdev contert
elsntycren et
v Wiy
e Wi

ekt

 board n00000001 Sensor A /dev/v4l-subdev0 0 n00000005 0 Debayer A /dev/v4l-subdev2 1 n00000001:port0->n00000005:port0 n0000000b Raw Capture 0 /dev/video0 n00000001:port0->n0000000b n00000002 Lens A /dev/v4l-subdev5 n00000001->n00000002 n00000015 0 Scaler /dev/v4l-subdev5 1 n00000005:port1->n00000015:port0 n00000003 Sensor B /dev/v4l-subdev1 0 n00000008 0 Debayer B /dev/v4l-subdev3 1 n00000003:port0->n00000008:port0 n0000000f Raw Capture 1 /dev/video1 n00000003:port0->n0000000f n00000004 Lens B /dev/v4l-subdev6 n00000003->n00000004 n00000008:port1->n00000015:port0 n00000018 RGB/YUV Capture /dev/video2 n00000015:port1->n00000018 n00000013 RGB/YUV Input /dev/v4l-subdev4 0 n00000013:port0->n00000015:port0 board n00000001 Sensor A /dev/v4l-subdev0 0 n00000005 0 Debayer A /dev/v4l-subdev2 1 n00000001:port0->n00000005:port0 n0000000b Raw Capture 0 /dev/video0 n00000001:port0->n0000000b n00000002 Lens A /dev/v4l-subdev5 n00000001->n00000002 n00000015 0 Scaler /dev/v4l-subdev5 1 n00000005:port1->n00000015:port0 n00000003 Sensor B /dev/v4l-subdev1 0 n00000008 0 Debayer B /dev/v4l-subdev3 1 n00000003:port0->n00000008:port0 n0000000f Raw Capture 1 /dev/video1 n00000003:port0->n0000000f n00000004 Lens B /dev/v4l-subdev6 n00000003->n00000004 n00000008:port1->n00000015:port0 n00000018 RGB/YUV Capture /dev/video2 n00000015:port1->n00000018 n00000013 RGB/YUV Input /dev/v4l-subdev4 0 n00000013:port0->n00000015:port0 V4L2 Driver ISP

Paramsl

L 4
o~
,...b ¥

cle

Params

ISP

time

VAL2 Driver

ISP

[Fedia entiy context

sttt i device context
st e
snaieietor
I gyt

i device context T2 subdev contert
b ety s s e ety et
bz e e e s
A 0 2 kst

static struct vb2_queue *get_vb2_queue(struct file *file,
struct video_device *vdev)

struct video_device_context *ctx =
video_device_context_from_file(file, vdev);

return ctx ? &ctx->queue
B vdev->default_context ? &vdev->default_context->queue
vdev->queue;

struct media_device_ops {
int (*link_notify)(struct media_link *link, u32 flags,
unsigned int notification);
struct media_request *(*req_alloc)(struct media_device *mdev);
void (*req_free)(struct media_request *req);
int (*req_validate)(struct media_request *req);
void (*req_queue)(struct media_request *req);
void (*release)(struct media_device *mdev);
int (*alloc_context)(struct media_device *mdev
struct media_device_context **ctx);
void (*destroy_context)(struct media_device_context *ctx);

 media device

 media device context

 media_device_fh

 media device context

 media_device_fh

 struct list_head contexts; struct kref refcount; topology (todo)
 struct list_head contexts; struct kref refcount; topology (todo)

 media device context

 media_device_fh

 struct list_head contexts; struct kref refcount; topology (todo)

 open()
 media_ops.alloc_context()

media_fd
video_fd

open("/dev/mediaX", ...);
open("/dev/videoX", ...);

struct video_device_context ¢ = {
.context_fd = media_fd;
3

ioctl(video_fd, VIDIOC_BIND_CONTEXT, &c);

/>
* Operate the video device as usual.

* 'video_fd' is bound to a specific context.
*/

ioctl(video_fd, VIDIOC_..., ...);

media device
media_ops.aloc_context()

et | o] | s derce]

s sty ooty

 media entity context
 kref refcount list_entry

 video device context

 media entity context vdev v2b_queue queue_lock

 v4l2 subdev context

 media entity context v4l2_subdev v4l2_subdev_state

Multi-context support
in vV4L2

+- / \ s Media-summit 2024
Vienna
| | Jacopo Mondi
Laurent Pinchart
et

jacopo.mondi@ideasonboard.com

 _

+-/ \-+

| (o) |

+-----+

Multi-context support

in V4L2

Media-summit 2024

Vienna

Jacopo Mondi

Laurent Pinchart

jacopo.mondi@ideasonboard.com

Hello everybody, and welcome to this presentation about libcamera. For those of you who are lucky enough to join us live from Seattle today, thank you for waking up early. This is the first slot of the day, so I know how difficult it can be.

My name is Laurent Pinchart. I’m the chief architect and project manager of libcamera. Today I’m going to take you on libcamera’s fabulous journey.

So let’s dive in the subject.

(Some) ISPs are time-multiplexed devices

		Resources are multiplexed at the HW or FW level and some ISP processes images in tiles

		ISPs can handle streams from different camera inputs by alternating ‘contexts’

ISP time multiplexing

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

ISP time multiplexing

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

The problem has traditionally been solved by registering multiple instances of the same media graph

		One ISP instance in the system, one driver instance bound to it, multiple media graph instances (with many video device and subdevice devnodes)

		Applications are ‘tricked’ into thinking of dealing with a dedicated instance of the ISP

		Can this scale ?

Media graph multiplexing

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

Media graph multiplexing

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

Introducing contexts

boardlibcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

Contexts:

		 Execution contexts stacked on a single instance of a media graph

		 Isolated at the process level

		 Associates in an isolated environment:

		Video Devices

		V4L2 Subdevices (todo)

		Media device links state (todo)

Introducing contexts

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

Media contexts

		 Types:

		Media device context (MC)

		 Media entity context (MC)

		Video device context	(V4L2)

		V4L2 subdevice context (V4L2)

		 IOCTLs

		 VIDIOC_BIND_CONTEXT

		 	VIDIOC_SUBDEV_BIND_CONTEXT (todo)

Media contexts: key design elements

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

Media device context

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

Media device context

		 Created at media device open time

		 Refcounted

		 Referenced by media-fh

		 Stores a list of struct media_entity_contexts

		 Drivers can extend it

Media device context

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

Media device context

Drivers can extend the media_device_context

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

Media entity context

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

Media entity context

		 Refcounted

		 Linked in the contexts list of struct media_device_context

Video device context

		 Referenced by struct v4l2-fh

		 Extends media entity context

		 Stores struct vb2_queue

V4L2 subdevice context (todo)

		 Referenced from struct v4l2-subdev-fh

		 Extends media entity context

		 Stores v4l2_subdev_state

Media entity context

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

Drivers can extend the media entity context

Media entity context

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

The uAPI: VIDIOC_BIND_CONTEXT

VIDIOC_BIND_CONTEXT(media_fd)

		 Create a video_device_context

		 Add it to the list of contexts in media_device_context

		 Stores a reference to in the struct v4l2-fh

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

The uAPI: VIDIOC_BIND_CONTEXT

VIDIOC_BIND_CONTEXT(media_fd)

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

The uAPI: VIDIOC_BIND_CONTEXT

VIDIOC_BIND_CONTEXT(media_fd)

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

Context binding

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

Video device multiplexing

Video device context: multiplexing a video device

		 Move the vb2_queue from struct video_device to struct video_device_context

		 The format and the configuration of the video device is moved to the driver-specific video device context

		 Drivers extend struct video_device_context to store the context-specific information

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

Video device multiplexing

videobuf2: get the vb2_queue from the context

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

Video device multiplexing

videobuf2: get the vb2_queue from the context

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

Drivers API

vb2_ops callbacks

				receive a vb2_queue as argument

		get context from the queue (container_of)

v4l2-ioctl-ops callbacks

				receive a file * as argument

		get context from the open file handle

Internal driver ops

				get contexts for the media entities registered by the driver associated to the same media device context

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

Drivers API: video_device_context_get()

video_device_context_get()

				Drivers register multiple video devices and subdevices

		They need to get contexts associated to the same struct media_device_context *

		video_device_context_get(mdev_context, vdev)

		v4l2_subdev_context_get(mdev_context, sd) (todo)

		Wrappers around media_device_get_entity_context()

		Walk the list of contexts associated in a media device context and find the one with a matching struct media_entity *

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

Drivers API: video_device_context_get()

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

Additional notes

Default contexts:

				Allows context-aware drivers work with context-aware and non-context aware userspace

Opt-in:

				Context support is totally opt-in: drivers that do not support multiplexing does not modified

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

todos

Per-context media topology

				Move links state to struct media_device_context

Subdevs

				Same design as video devices

		Store reference in stuct subdev-fh

		Associate with a struct media_device_context

		Reuse struct subdev_state as much as possible

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

Open questions

How to make sure userspace does not mix-up contexts ?

V4l2 Controls

				I’m no expert there and I don’t know if this is possible or even desirable

m2m context

				Should the two be unified ?

libcamera has driven the development of extensions in V4L2 and MC to fulfil the needs of the platforms we work with. We have also encountered ambiguities and design deficiencies in V4L2 and worked on fixing them. The libcamera team has extensive experience with kernel development in the media subsystem, so we can also help vendors in this area if their platforms have needs that are not covered yet.

On a side note, it was an interesting experience of humility to realize that some of those problems in V4L2 were actually in APIs that I had designed myself. That’s another lesson learnt from libcamera, a kernel API that only gets validated with test tools, without a real userspace stack, will most likely have defects.

 board n00000001 Sensor A /dev/v4l-subdev0 0 n00000005 0 Debayer A /dev/v4l-subdev2 1 n00000001:port0->n00000005:port0 n0000000b Raw Capture 0 /dev/video0 n00000001:port0->n0000000b n00000002 Lens A /dev/v4l-subdev5 n00000001->n00000002 n00000015 0 Scaler /dev/v4l-subdev5 1 n00000005:port1->n00000015:port0 n00000003 Sensor B /dev/v4l-subdev1 0 n00000008 0 Debayer B /dev/v4l-subdev3 1 n00000003:port0->n00000008:port0 n0000000f Raw Capture 1 /dev/video1 n00000003:port0->n0000000f n00000004 Lens B /dev/v4l-subdev6 n00000003->n00000004 n00000008:port1->n00000015:port0 n00000018 RGB/YUV Capture /dev/video2 n00000015:port1->n00000018 n00000013 RGB/YUV Input /dev/v4l-subdev4 0 n00000013:port0->n00000015:port0 n00000001 Sensor A /dev/v4l-subdev0 0 n00000005 0 Debayer A /dev/v4l-subdev2 1 n00000001:port0->n00000005:port0 n0000000b Raw Capture 0 /dev/video0 n00000001:port0->n0000000b n00000002 Lens A /dev/v4l-subdev5 n00000001->n00000002 n00000015 0 Scaler /dev/v4l-subdev5 1 n00000005:port1->n00000015:port0 n00000003 Sensor B /dev/v4l-subdev1 0 n00000008 0 Debayer B /dev/v4l-subdev3 1 n00000003:port0->n00000008:port0 n0000000f Raw Capture 1 /dev/video1 n00000003:port0->n0000000f n00000004 Lens B /dev/v4l-subdev6 n00000003->n00000004 n00000008:port1->n00000015:port0 n00000018 RGB/YUV Capture /dev/video2 n00000015:port1->n00000018 n00000013 RGB/YUV Input /dev/v4l-subdev4 0 n00000013:port0->n00000015:port0 n00000001 Sensor A /dev/v4l-subdev0 0 n00000005 0 Debayer A /dev/v4l-subdev2 1 n00000001:port0->n00000005:port0 n0000000b Raw Capture 0 /dev/video0 n00000001:port0->n0000000b n00000002 Lens A /dev/v4l-subdev5 n00000001->n00000002 n00000015 0 Scaler /dev/v4l-subdev5 1 n00000005:port1->n00000015:port0 n00000003 Sensor B /dev/v4l-subdev1 0 n00000008 0 Debayer B /dev/v4l-subdev3 1 n00000003:port0->n00000008:port0 n0000000f Raw Capture 1 /dev/video1 n00000003:port0->n0000000f n00000004 Lens B /dev/v4l-subdev6 n00000003->n00000004 n00000008:port1->n00000015:port0 n00000018 RGB/YUV Capture /dev/video2 n00000015:port1->n00000018 n00000013 RGB/YUV Input /dev/v4l-subdev4 0 n00000013:port0->n00000015:port0 Params Params } Context 1 } Context 2

 ISP time Params Params

		Click to edit the outline text format

		Second Outline Level

		Third Outline Level

		Fourth Outline Level

		Fifth Outline Level

		Sixth Outline Level

		Seventh Outline Level

		Eighth Outline Level

		Ninth Outline Level

Keep Out

		Click to edit the outline text format

		Second Outline Level

		Third Outline Level

		Fourth Outline Level

		Fifth Outline Level

		Sixth Outline Level

		Seventh Outline Level

		Eighth Outline Level

		Ninth Outline Level

