
Ricardo Ribalda / 16th September 2024

Multi-committers
or How I Learned to Stop Worrying and Learned to Love media-CI

Proprietary + Confidential

The canonical test suite for linux-media. It is a set of
scripts that originated from the Maintainers that is
distributed in different forms:

● Script that can be run in your computer
● Docker container
● Gitlab Pipeline

It is the result of 360 patches, 136 MR, 59 bugs and tens
of hours of discussions.

If your code does not throw an error in media-ci: Your
code does not have any typical error.

Media-ci

Proprietary + Confidential

Use-cases of media-ci

Developers Maintainers Patchwork Multi
 committers
 tree

Proprietary + Confidential

Test their code before submitting it to the ML.

Developers

Proprietary + Confidential

Check PR before landing them

Maintainers

Proprietary + Confidential

Check for typical errors before anyone reviews it

Patchwork

Proprietary + ConfidentialProprietary + Confidential

Multi-committers tree:

Proprietary + Confidential

Linux media tree that is:

● Hosted in Gitlab
● Automatically validated with media-ci
● Always open for contributions
● Committers can land their code without maintainers help

Multi Committers tree

Proprietary + Confidential

Core Committer

Subsystem
Maintainers + Laurent

+ Sakari + Sean +
Sebastian

Subsystem
Maintainer

Mauro and Hans

Committer

Core Maintainers +
TBD List Provided by

Hans

Contributor

Anyone that posts a
patch to the

linux-media mailing
list

Proprietary + Confidential

Responsabilites
● Fix any warning / error thrown by CI before pinging the ML for a review (or

explain why the warning / error cannot be fixed).

Rights

● Use the playground tree

Contributor

Proprietary + Confidential

Contributor

user@host:~linux$ git fetch media-staging
user@host:~linux$ b4 prep -n myfeature
user@host:~linux$ HACK!!!!!!!
user@host:~linux$ b4 send

Proprietary + Confidential

Responsibilities
● Prepare Merge Request (MR) following Subsystem Maintainers rules

○ Create tooling to simplify it
● Contribute to media-ci

○ Implement maintainer rules
○ allowlist/Fix new warnings when there is a new Linus release

● Try to attend Monthly Committer meetings
● Keep Patchwork up to date

Rights
● Land MR into the tree

○ Patches need to pass CI
○ Patches cannot introduce subsystem ABI changes
○ Patches are not fixes for the current rcX mainline git repo
○ Patches cannot modify core files
○ Patches need to be reviewed by at least another Committer
○ MR are landed via "fast-forward"

● Own a user repository
● Use the CI bots

Committer

Proprietary + Confidential

Committer

user@host:~linux$ b4 shazam -l bla@chromium.org
user@host:~linux$ git push multi-committer -o
merge_request.create

Proprietary + Confidential

Responsibilities
● Promptly review core changes

Rights

● Land Merge Requests affecting core files
○ They cannot change subsystem ABI
○ Patches need to be reviewed by at least another core committer.
○ MR are landed via "fast-forward"

Core Committer

Proprietary + Confidential

Responsibilities
● Merge branches directly

○ Linus' rcs into the tree (maybe you want help from a "gardener" that you
nominate?)

○ Other subsystem stable branches (when needed)
○ Fixes branch (when needed)

● Review subsystem ABI changes
● Define the tests that should be checked in CI
● Forward content of the tree to Linus
● Promote / Demote committers

Rights

● Unlimited push rights to the repository.
○ This includes rebasing

● Can bypass CI

Subsystem Maintainer

Proprietary + ConfidentialProprietary + Confidential

Patches workflow

Proprietary + Confidential

Current workflow

Most Patches land in
multi-committer tree

Subsystem Maintainers
review the tree to
make sure there is

nothing broken

Subsystem Maintainers
merge multi-committer
tree into media-staging

Follow legacy workflow

Proprietary + Confidential

Future workflow

ALL Patches (expect
fixes) land in

multi-commitrer tree

Subsystem Maintainers
send PR to Linus

Proprietary + ConfidentialProprietary + Confidential

Promo

Proprietary + Confidential

● Committers / Maintainers propose a new committer to the Subsystem
Maintainers

● Committer candidates must have:
○ Good contribution records
○ Must have their key signed by at least one Committer
○ Must have been met in person by another Committer
○ GPG sign the committers agreement

Whole process is done Out of mailing list, to avoid putting pressure into the
Maintainers.

After promo, a welcome message is sent to the Mailing List and their name is
added to committers.txt

Become a committer

Proprietary + Confidential

● Subsystem maintainers can decide at any time to demote a person.
● Committers can self-exclude themselves if they feel pressure from their

company or they retire.
● A committer that stops committing is auto-excluded.

The process is done out of the mailing list.

After demotion their name is removed from committers.txt.

Stop being a committer

