Rust in V4L2

Where are we at?

Daniel Almeida
Consultant Software Engineer

daniel.almeida@collabora.com

Open First

*

why ? *

Why?

® Rust has better, more expressive

ergonomics and types (Vec, Box, etc)
® Rust has a thriving community

® Native Rust is safe and fast

Most importantly: some kernel
communities are already

experimenting successfully.

but

There’s a catch-22 here :/

Would you write a driver in Rust if you
had to do all the infrastructure

yourself?

What do | hope to achieve here?

Consensus on how to move forward with

the low-risk, low-hanging fruit

Let’s see what we have so far

[0)

Some POD types

A *very* thin videobuf2 abstraction

Abstractions for *some* VIDIOC_* ioctls

The necessary code to get the driver to

probe

A module that prints to the terminal

when processing some VIDIOC_* ioctls

rust/bindings/bindings_helper.h
rust/kernel/lib.rs
rust/kernel/media/mod.rs
rust/kernel/media/v412/capabilities.rs
rust/kernel/media/v412/dev.rs
rust/kernel/media/v4l12/device.rs
rust/kernel/media/v412/enums.rs
rust/kernel/media/v4l2/format.rs
rust/kernel/media/v412/framesize.rs
rust/kernel/media/v412/inputs.rs
rust/kernel/media/v412/1ioctls.rs
rust/kernel/media/v4l2/mmap.rs
rust/kernel/media/v412/mod.rs
rust/kernel/media/videobuf2/core.rs
rust/kernel/media/videobuf2/mod.rs
rust/kernel/sync.rs
rust/kernel/sync/ffi_mutex.rs
samples/rust/Kconfig
samples/rust/Makefile
samples/rust/rust_v4l2.rs

20 files changed, 2918 insertions(+)

8

P

6
80
369
115
135
178
176
104
608
81
13
552
)

1
70
11
1
403

+

+

+

+++4+

i s o = S S I S

++++4+

R

+H++++++

+++++++

+++++

I o
bt

+

B

S o S S o

16

How does it work?

General idea

°* bindings_helper.h
°* Raw bindings (bindings_generated.rs)

® Safe abstraction

(rust/subsystem/foo.rs?)

* Actual driver

(subsystem/usual_location/driver.rs)

bindings_helper.h

/* SPDX-License-Identifier: GPL-2.0 */

/*
* Header that contains the code (mostly headers) for which Rust bindings
* will be automatically generated by "bindgen’.

*
*

Sorted alphabetically.
5/

#include <kunit/test.h>
#include <linux/amba/bus.h>
#include <linux/cdev.h>
#include <linux/clk.h>
#include <linux/errname.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/fs_parser.h>
#include <linux/gpio/driver.h>
#include <linux/hw_random.h>
/* more headers... */

19

Bindgen will process this to generate

bindings_generated.rs

pub struct vb2_buffer {

pub
pub
pub
pub
pub
pub
pub
pub
pub
pub
pub
pub
pub

vb2_queue: *mut vb2_queue, // Raw pointer (is this valid?)
index: core::ffi::c_uint, // Regular integer vs Enum

type_: core::ffi::c_uint,

memory: core::ffi::c_uint,

num_planes: core::ffi::c_uint,

timestamp: u64_,

request: *mut media_request, // Raw pointer

req_obj: media_request_object, // This contains raw pointers
state: vb2_buffer_state, // Type alias for c_uint
_bitfield_1: __BindgenBitfieldUnit<[u8; lusize], u8>, // Bitfield (unsafe)
planes: [vb2_plane; 8usize], // Are all entries valid?
queued_entry: list_head, // Shouldn't be exposed directly
done_entry: list_head,

21

You can see that this struct has obvious

ISsues

pub struct vb2_buffer {

pub
pub
pub
pub
pub
pub
pub
pub
pub
pub
pub
pub
pub

vb2_queue: *mut vb2_queue, // Raw pointer (is this valid?)
index: core::ffi::c_uint, // Regular integer vs Enum

type_: core::ffi::c_uint,

memory: core::ffi::c_uint,

num_planes: core::ffi::c_uint,

timestamp: u64_,

request: *mut media_request, // Raw pointer

req_obj: media_request_object, // This contains raw pointers
state: vb2_buffer_state, // Type alias for c_uint
_bitfield_1: __BindgenBitfieldUnit<[u8; lusize], u8>, // Bitfield (unsafe)
planes: [vb2_plane; 8usize], // Are all entries valid?
queued_entry: list_head, // Shouldn't be exposed directly
done_entry: list_head,

23

Let’s have a look at what “vb2_ops”

translates to

pub struct vb2_ops {
pub queue_setup: ::core::option::0ption<
unsafe extern "C" fn(// C linkage, will be called by the kernel directly
q: *mut vb2 _queue, // Receilves the pointer from C, C manages the lifetime
num_buffers: *mut core::ffi::c_uint,
num_planes: *mut core::ffi::c_uint,
sizes: *mut core::ffi::c_uint,
alloc_devs: *mut *mut device,
) -> core::ffisic_int, // Returns an int to the C side
>J
pub wailt_prepare: ::core::option::0ption<unsafe extern "C" fn(q: *mut vb2_queue)>,
pub wait_finish: ::core::option::0ption<unsafe extern "C" fn(qg: *mut vb2_queue)>,
pub buf_out_validate:
::core::option::Option<unsafe extern "C" fn(vb: *mut vb2_buffer) -> core::ffi::c_int>,

25

With C linkage, the kernel will be calling
Rust directly. That’'s where we get

control.

Again, this is not suitable for general

use. We must bridge this to a saf(er) API

How do we go about creating this saf(er)

API?

Let’s look at the trivial case: plain

“data” types

/// A wrapper over a pointer to “struct v412_capability’.
pub struct CapabilitiesRef(*mut bindings::v412_capability);

impl CapabilitiesRef {
/// # Safety
/// The caller must ensure that “ptr’ 1is valid and remains valid for the lifetime of the
/// returned [CapabilitiesRef’] instance.
pub unsafe fn from_ptr(ptr: *mut bindings::v412_capability) -> Self {
Self(ptr)
}

// For internal convenience only.

fn as_mut{&mut self) -= &mut bindings::v412_capability {
// SAFETY: ptr is safe during the lifetime of [CapabilitiesRef'] as per
// the safety requirement in *from_ptr()’
unsafe { self.0.as_mut().unwrap() }

/// Sets the “driver’ field.

pub fn set_driver(&mut self, driver: &[u8]) {
let this = self.as_mut();
let len = core::cmp::min(driver.len(), this.driver.len());
this.driver[0..len].copy_from_slice(&driver[0..len]);

/// Sets the ‘card’ field.

pub fn set_card{(&mut self, card: &[u8]) {
let this = self.as_mut();
let len = core::cmp::min{card.len(), this.card.len());
this.card[0..len].copy_from_slice(&card[0..1len]);

/// Sets the “bus_info™ field.

pub fn set_bus_info(&mut self, bus_info: &[u8]) {
let this = self.as_mut();
let len = core::cmp::min(bus_info.len(), this.bus_info.len());
this.bus_info[0..len].copy_from_slice(&bus_info[0..len]);

30

How iIs this safe?

°* Remember that pointer dereference is unsafe

® Assume that the pointer passed in by the

kernel is valid

* Assume it remains valid for the lifetime of

& self

* Underthe above conditions, it’s OK to

dereference it and modity it

Other types are harder: they also expose

behavior

For these types, we must expose safe
Rust functions/traits and call C behind

the scenes

So much for that.

Let’s discuss something important

before we continue.

Lifetimes!

Let’s have a look at that trivial

abstraction again

/// A wrapper over a pointer to “struct v412_capability’.
pub struct CapabilitiesRef(*mut bindings::v412_capability);

impl CapabilitiesRef {
/// # Safety
/// The caller must ensure that “ptr’ 1is valid and remains valid for the lifetime of the
/// returned [CapabilitiesRef’] instance.
pub unsafe fn from_ptr(ptr: *mut bindings::v412_capability) -> Self {
Self(ptr)
}

// For internal convenience only.

fn as_mut{&mut self) -= &mut bindings::v412_capability {
// SAFETY: ptr is safe during the lifetime of [CapabilitiesRef'] as per
// the safety requirement in *from_ptr()’
unsafe { self.0.as_mut().unwrap() }

/// Sets the “driver’ field.

pub fn set_driver(&mut self, driver: &[u8]) {
let this = self.as_mut();
let len = core::cmp::min(driver.len(), this.driver.len());
this.driver[0..len].copy_from_slice(&driver[0..len]);

/// Sets the ‘card’ field.

pub fn set_card{(&mut self, card: &[u8]) {
let this = self.as_mut();
let len = core::cmp::min{card.len(), this.card.len());
this.card[0..len].copy_from_slice(&card[0..1len]);

/// Sets the “bus_info™ field.

pub fn set_bus_info(&mut self, bus_info: &[u8]) {
let this = self.as_mut();
let len = core::cmp::min(bus_info.len(), this.bus_info.len());
this.bus_info[0..len].copy_from_slice(&bus_info[0..len]);

38

Note that we get a *pointer®, IOW: the

kernel manages the lifetime

Lifetime for C objects

°* Again, the kernel controls the lifetime

® There’s no relationship between our

wrapper dropping and the C object being

cleaned

°* Butwecan use it when the kernel

passes it to us

Wait, if C is controlling the lifetime in a

lot of cases, why are we doing this then?

Let’s get some things out of the way

here:

Yes, this is only as safe as the bindings

are safe

But, even when the kernel controls the

lifetime, we get the following benefits

We get to benefit from Rust’s ergonomics
We get to benefit from the types in core::*

Other Rust features still apply (i.e. the

reference rules and guarantees still apply)

There’s a subset of the kernel that *really®

benefits from the above

But most importantly, we must break

the catch-22 here

Why?

°* This is an investment: it paves the way
for new kernel frameworks to be written

In Rust from the ground up

* With native Rust, that’s where we start

to reap some *major* benefits

Where can we start?

48

Some low-hanging fruit

®* Codec libraries and parsers (VP9, AV1,
JPEG, H.264, etc)

® The codec-specific logic in codec drivers
(e.g. writing codec metadata to MMIO

registers)

This offers a low-risk path for us to

experiment with Rust

Some roadblocks

° Maintainership issues

°* The huge amount of work involved in abstractions
° Issues Iin the C code itself

°* Not everybody knows Rust

* Wil this break existing C code?

Maintainership issues

* Well, | volunteer

®* | expect people benefitting from Rust to help

out as we go

®* IMHO, the most important thing is to notice

whether a change should touch the Rust side

* |wonderif we can automate the above

52

The “huge amount of work” issue

®* We do not have to create bindings for every

thing under the sun

® Onlythe “entrypoints” should have bindings,
l.e. only things directly called by drivers

®* And even still, we only need to write these as

we see the need for them

Issues Iin the C code itself

Whatever issues with C will be fixed by

proxy whenever the C code is fixed

No, this will *not* break existing C code,

how could 1t?

Miguel Ojeda’s suggestion

Some subsystems may want to give that maintainer a different
"MAINTAINERS entry, e.g. as a child subsystem that sends PRs to the
main one and may be marked as "experimental". This i1s also a way to
see how the new abstractions work or not, giving maintainers more time
to decide whether to commit to a Rust side or not

vV V.V Vv V

56

Summary

® Yes, this will be hard

® There are ways we can make this less

risky and move along if it fails

°* IMHO we should try this, it might work

out :)

By the way

® We can use proc_macros for the “plain

data” types to write the boilerplate

®* lam working on just enough bindings
so | can write a barebones visl clone

(stateless m2m decoder)

Thoughts?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

