
Open First

  Rust in V4L2

Where are we at?

Daniel Almeida

Consultant Software Engineer

daniel.almeida@collabora.com 



2

* why ? *
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Why?

● Rust has better, more expressive 

ergonomics and types (Vec, Box, etc)

● Rust has a thriving community

● Native Rust is safe and fast
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Most importantly: some kernel 

communities are already 

experimenting successfully.
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but
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There’s a catch-22 here :/
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Would you write a driver in Rust if you 

had to do all the infrastructure 

yourself?
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What do I hope to achieve here?



9

Consensus on how to move forward with 

the low-risk, low-hanging fruit
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Let’s see what we have so far
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Some POD types
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A *very* thin videobuf2 abstraction
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Abstractions for *some* VIDIOC_* ioctls
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The necessary code to get the driver to 

probe
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A module that prints to the terminal 

when processing some VIDIOC_* ioctls
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How does it work?
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General idea

● bindings_helper.h

● Raw bindings (bindings_generated.rs)

● Safe abstraction 

(rust/subsystem/foo.rs?)

● Actual driver 

(subsystem/usual_location/driver.rs)



19

bindings_helper.h
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Bindgen will process this to generate 

bindings_generated.rs
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You can see that this struct has obvious 

issues
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Let’s have a look at what  “vb2_ops” 

translates to
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With C linkage, the kernel will be calling 

Rust directly. That’s where we get 

control.
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Again, this is not suitable for general 

use. We must bridge this to a saf(er) API
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How do we go about creating this saf(er) 

API?
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Let’s look at the trivial case: plain 

“data” types
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How is this safe?
● Remember that pointer dereference is unsafe

● Assume that the pointer passed in by the 

kernel is valid

● Assume it remains valid for the lifetime of 

&self

● Under the above conditions, it’s OK to 

dereference it and modify it
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Other types are harder: they also expose 

behavior
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For these types, we must expose safe 

Rust functions/traits and call C behind 

the scenes
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So much for that.
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Let’s discuss something important 

before we continue.
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Lifetimes!
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Let’s have a look at that trivial 

abstraction again
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Note that we get a *pointer*, IOW: the 

kernel manages the lifetime
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Lifetime for C objects

● Again, the kernel controls the lifetime

● There’s no relationship between our 

wrapper dropping and the C object being 

cleaned

● But we can use it when the kernel 

passes it to us
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Wait, if C is controlling the lifetime in a 

lot of cases, why are we doing this then?
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Let’s get some things out of the way 

here:
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Yes, this is only as safe as the bindings 

are safe
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But, even when the kernel controls the 

lifetime, we get the following benefits



45

● We get to benefit from Rust’s ergonomics

● We get to benefit from the types in core::*

● Other Rust features still apply (i.e. the 

reference rules and guarantees still apply)

● There’s a subset of the kernel that *really* 

benefits from the above
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But most importantly, we must break 

the catch-22 here
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Why?

● This is an investment: it paves the way 

for new kernel frameworks to be written 

in Rust from the ground up

● With native Rust, that’s where we start 

to reap some *major* benefits
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Where can we start?
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Some low-hanging fruit

● Codec libraries and parsers (VP9, AV1, 

JPEG, H.264, etc)

● The codec-specific logic in codec drivers 

(e.g. writing codec metadata to MMIO 

registers)
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This offers a low-risk path for us to 

experiment with Rust
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Some roadblocks

● Maintainership issues

● The huge amount of work involved in abstractions

● Issues in the C code itself

● Not everybody knows Rust

● Will this break existing C code?
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Maintainership issues

● Well, I volunteer

● I expect people benefitting from Rust to help 

out as we go

● IMHO, the most important thing is to notice 

whether a change should touch the Rust side

● I wonder if we can automate the above
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The “huge amount of work” issue

● We do not have to create bindings for every 

thing under the sun

● Only the “entrypoints” should have bindings, 

i.e. only things directly called by drivers

● And even still, we only need to write these as 

we see the need for them
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Issues in the C code itself

Whatever issues with C will be fixed by 

proxy whenever the C code is fixed



55

No, this will *not* break existing C code, 

how could it?



56

Miguel Ojeda’s suggestion
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Summary

● Yes, this will be hard

● There are ways we can make this less 

risky and move along if it fails

● IMHO we should try this, it might work 

out :)
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By the way

● We can use proc_macros for the “plain 

data” types to write the boilerplate

● I am working on just enough bindings 

so I can write a barebones visl clone 

(stateless m2m decoder)
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Thoughts?
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