
Open First

 Rust in V4L2

Where are we at?

Daniel Almeida

Consultant Software Engineer

daniel.almeida@collabora.com

2

* why ? *

3

Why?

● Rust has better, more expressive

ergonomics and types (Vec, Box, etc)

● Rust has a thriving community

● Native Rust is safe and fast

4

Most importantly: some kernel

communities are already

experimenting successfully.

5

but

6

There’s a catch-22 here :/

7

Would you write a driver in Rust if you

had to do all the infrastructure

yourself?

8

What do I hope to achieve here?

9

Consensus on how to move forward with

the low-risk, low-hanging fruit

10

Let’s see what we have so far

11

Some POD types

12

A *very* thin videobuf2 abstraction

13

Abstractions for *some* VIDIOC_* ioctls

14

The necessary code to get the driver to

probe

15

A module that prints to the terminal

when processing some VIDIOC_* ioctls

16

17

How does it work?

18

General idea

● bindings_helper.h

● Raw bindings (bindings_generated.rs)

● Safe abstraction

(rust/subsystem/foo.rs?)

● Actual driver

(subsystem/usual_location/driver.rs)

19

bindings_helper.h

20

Bindgen will process this to generate

bindings_generated.rs

21

22

You can see that this struct has obvious

issues

23

24

Let’s have a look at what “vb2_ops”

translates to

25

26

With C linkage, the kernel will be calling

Rust directly. That’s where we get

control.

27

Again, this is not suitable for general

use. We must bridge this to a saf(er) API

28

How do we go about creating this saf(er)

API?

29

Let’s look at the trivial case: plain

“data” types

30

31

How is this safe?
● Remember that pointer dereference is unsafe

● Assume that the pointer passed in by the

kernel is valid

● Assume it remains valid for the lifetime of

&self

● Under the above conditions, it’s OK to

dereference it and modify it

32

Other types are harder: they also expose

behavior

33

For these types, we must expose safe

Rust functions/traits and call C behind

the scenes

34

So much for that.

35

Let’s discuss something important

before we continue.

36

Lifetimes!

37

Let’s have a look at that trivial

abstraction again

38

39

Note that we get a *pointer*, IOW: the

kernel manages the lifetime

40

Lifetime for C objects

● Again, the kernel controls the lifetime

● There’s no relationship between our

wrapper dropping and the C object being

cleaned

● But we can use it when the kernel

passes it to us

41

Wait, if C is controlling the lifetime in a

lot of cases, why are we doing this then?

42

Let’s get some things out of the way

here:

43

Yes, this is only as safe as the bindings

are safe

44

But, even when the kernel controls the

lifetime, we get the following benefits

45

● We get to benefit from Rust’s ergonomics

● We get to benefit from the types in core::*

● Other Rust features still apply (i.e. the

reference rules and guarantees still apply)

● There’s a subset of the kernel that *really*

benefits from the above

46

But most importantly, we must break

the catch-22 here

47

Why?

● This is an investment: it paves the way

for new kernel frameworks to be written

in Rust from the ground up

● With native Rust, that’s where we start

to reap some *major* benefits

48

Where can we start?

49

Some low-hanging fruit

● Codec libraries and parsers (VP9, AV1,

JPEG, H.264, etc)

● The codec-specific logic in codec drivers

(e.g. writing codec metadata to MMIO

registers)

50

This offers a low-risk path for us to

experiment with Rust

51

Some roadblocks

● Maintainership issues

● The huge amount of work involved in abstractions

● Issues in the C code itself

● Not everybody knows Rust

● Will this break existing C code?

52

Maintainership issues

● Well, I volunteer

● I expect people benefitting from Rust to help

out as we go

● IMHO, the most important thing is to notice

whether a change should touch the Rust side

● I wonder if we can automate the above

53

The “huge amount of work” issue

● We do not have to create bindings for every

thing under the sun

● Only the “entrypoints” should have bindings,

i.e. only things directly called by drivers

● And even still, we only need to write these as

we see the need for them

54

Issues in the C code itself

Whatever issues with C will be fixed by

proxy whenever the C code is fixed

55

No, this will *not* break existing C code,

how could it?

56

Miguel Ojeda’s suggestion

57

Summary

● Yes, this will be hard

● There are ways we can make this less

risky and move along if it fails

● IMHO we should try this, it might work

out :)

58

By the way

● We can use proc_macros for the “plain

data” types to write the boilerplate

● I am working on just enough bindings

so I can write a barebones visl clone

(stateless m2m decoder)

59

Thoughts?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

