
1© 2013 Cisco and/or its affiliates. All rights reserved.

Design and Implementation
The Answer to Life, the Universe and Everything

Hans Verkuil
Cisco Systems Norway

2© 2013 Cisco and/or its affiliates. All rights reserved.

Overview
● Design and implementation guidelines.

● Simple techniques to keep your code nice and short.

● General guidelines to help you stay sane.

3© 2013 Cisco and/or its affiliates. All rights reserved.

Disclaimer
● These are guidelines only, for every guideline I can think of exceptions

where it doesn't apply. In other words, use common sense.

● This presentation reflects my opinions, not those of my employer.

● I am not responsible for any adverse effects this presentation might have
on your career. I am, of course, responsible for any positive effects this
presentation might have.

4© 2013 Cisco and/or its affiliates. All rights reserved.

Design and Implementation
Guidelines

5© 2013 Cisco and/or its affiliates. All rights reserved.

Do As Little As Possible!

6© 2013 Cisco and/or its affiliates. All rights reserved.

Design Guidelines
● Initial design should be fairly high-level. So don't start designing function

prototypes, stick to the global picture.

● Identify which parts are 'risky' because you do not know how to
implement it, or do not know how long it will take to implement it, or do
not know if it even can be done.

● Highly dependent on experience and capabilities of the S/W engineer.

● Start with the high-risk parts. Just research and implement enough to be
able to test these parts of the code.

● Try to plan the time you'll need to research these high-risk areas.

© 2013 Cisco and/or its affiliates. All rights reserved. 7

Implementation Guidelines

● Evolutionary prototyping.

● Coding == learning.

● Design → coding → learning → design → …

● Avoid too many layers: that is hard to debug and understand.

● Avoid too few layers: a certain amount of abstraction makes the code
much more understandable.

● Lean and mean: only code what you need, not what you might need.
But keep the door open for future developments.

● It is your responsibility to warn your project lead as soon as you know
you are not going to make the planning!

© 2013 Cisco and/or its affiliates. All rights reserved. 8

Code Classification
● Absent code: that's where you earn your pay.

● Working code: that's where someone earned his pay.

● Buggy code: that's where someone didn't earn his pay, but you will.

● Dead code: that's when someone should be fired and you are really
going to earn your pay.

9© 2013 Cisco and/or its affiliates. All rights reserved.

Keep It Simple,
Keep It Short

10© 2013 Cisco and/or its affiliates. All rights reserved.

Increasingly, people seem to misinterpret
complexity as sophistication, which is baffling:
the incomprehensible should cause suspicion

rather than admiration.

Niklaus Wirth

© 2013 Cisco and/or its affiliates. All rights reserved. 11

● Keeping it simple is very, very hard.

● Keeping it short is much easier and is the first step to simplicity.

● Short code is easier to understand and therefore easier to maintain.

● Short code highlights bad code which might be a candidate for a
rewrite.

● Removal of non-essential code does not help a bad design. But it
does make a bad design more obvious.

Keep It Simple, Keep It Short

© 2013 Cisco and/or its affiliates. All rights reserved. 12

/**
@see DVBT_DEMOD_FP_IS_SIGNAL_LOCKED
*/
int
rtl2832_IsSignalLocked(
 DVBT_DEMOD_MODULE *pDemod,
 int *pAnswer
)
{
 unsigned long FsmStage;

 // Get FSM stage from FSM_STAGE.
 if(pDemod->GetRegBitsWithPage(pDemod, DVBT_FSM_STAGE, &FsmStage) != FUNCTION_SUCCESS)
 goto error_status_get_registers;

 // Determine answer according to FSM stage.
 if(FsmStage == 11)
 *pAnswer = YES;
 else
 *pAnswer = NO;

 return FUNCTION_SUCCESS;

error_status_get_registers:
 return FUNCTION_ERROR;
}

Example 1: Keep It Short

© 2013 Cisco and/or its affiliates. All rights reserved. 13

Old code: 32 lines. New code: 13 lines.

/**
@see DVBT_DEMOD_FP_IS_SIGNAL_LOCKED
*/
int rtl2832_IsSignalLocked(DVBT_DEMOD_MODULE *pDemod, int *pAnswer)
{
 unsigned long FsmStage;

 if (pDemod->GetRegBitsWithPage(pDemod, DVBT_FSM_STAGE, &FsmStage) != FUNCTION_SUCCESS)
 return FUNCTION_ERROR;

 *pAnswer = (FsmStage == 11) ? YES : NO;
 return FUNCTION_SUCCESS;
}

Example 1: Rewritten

© 2013 Cisco and/or its affiliates. All rights reserved. 14

/* 19 lines of comment removed */
AiUInt8 UnivWriteRegister(AiUInt32 RegBaseAddr,
 AiUInt16 Register, AiUInt32 regValue)
{
AiUInt32 *addr_value, regvalue;

 regvalue = (BSWAP32(regValue));

 addr_value = (AiUInt32*) (Register + RegBaseAddr);

#ifdef AVI_REGISTER_IO_TEST
 printf("____UnivWriteRegister: Address:%08x / Data=%08x(BE), %08x(LE)\r\n", (int)addr_value,
(int)regValue,(int)regvalue);
#endif

 *addr_value = regvalue;

 return(TRUE);

} /* end: UnivWriteRegister */

Example 2: Keep It Short

© 2013 Cisco and/or its affiliates. All rights reserved. 15

Old code: 36 lines, new code 11 lines

/*! Write the specified register value to the specified
 * register offset in the Universe memory space.
 *
 * \param RegBaseAddr Register base address in Universe memory space
 * \param Register Offset from the register base address
 * \param regValue The value to be written
 */
void UnivWriteRegister(uint32_t RegBaseAddr, uint16_t Register, uint32_t regValue)
{
 *(uint32_t *)(RegBaseAddr + Register) = aviCpuToPci(regValue);
}

Example 2: Rewritten

© 2013 Cisco and/or its affiliates. All rights reserved. 16

Spacing

Alice was beginning to get very tired of sitting by her sister on the bank, and of having
nothing to do: once or twice she had peeped into the book her sister was reading, but it
had no pictures or conversations in it, “and what is the use of a book,” thought Alice
“without pictures or conversation?”

Alice was beginning to get very tired of sitting by her sister on the bank ,and of
having nothing to do:once or twice she
 had peeped into the book her

sister was reading,but it had no pictures or conversations in it , “ and what is the use of
a book,” thought Alice“without pictures or conversation ? ”

© 2013 Cisco and/or its affiliates. All rights reserved. 17

Example 3: Spacing
bool RTSPMsg::findCSeq(char *line){
 char *findCSeq = strstr(line,"cseq:");
 int seqNum = 0;
 if(findCSeq && (sscanf(findCSeq,"cseq: %d",&seqNum) == 1)){
 aCSeq = seqNum;
 return true;
 }else{
 return false;
 }
}

bool RTSPMsg::findCSeq(const char *line)
{
 const char *findCSeq = strstr(line, "cseq:");
 int seqNum = 0;

 if (findCSeq && sscanf(findCSeq, "cseq: %d", &seqNum) == 1) {
 aCSeq = seqNum;
 return true;
 }
 return false;
}

© 2013 Cisco and/or its affiliates. All rights reserved. 18

Example 4: Ridiculous Comments
/***/
/* */
/* Module : API_SYS Submodule : API_SYS_RESET */
/* */
/* Author : XXXXX XXXX Project : FOOBAR */
/* */
/* Source : C Tools : PC/AT; Norton Editor; */
/* CYGNUS, GNU-C, As, and LD */
/* IDT-C 5.1 Toolkit */
/*---*/
/* Create : 01.05.98 Update : 11.12.00 */
/*---*/
/* Descriptions */
/* ------------ */
/* Inputs : Reset control [rc] */
/* */
/* Outputs : Instruction acknowledge type [ackfl] */
/* */
/* Description : */
/* This function handles the 'API_RESET' instruction to initialize the */
/* FOOBAR hardware and software to an initial state. */
/* */
/***/

© 2013 Cisco and/or its affiliates. All rights reserved. 19

Control Flow 1: Return void if possible

AiUInt8 UnivWriteRegister(AiUInt32 RegBaseAddr, AiUInt16 Register, AiUInt32 regValue)
{
 (AiUInt32)(Register + RegBaseAddr) = BSWAP32(regValue);
 return TRUE;
}

AiUInt8 Foo(...)
{
 if (UnivWriteRegister(BoSta[BoNo].BoRegBasAddr, VINT_EN, Mask))
 return TRUE;
 return IntEnErr;
}

void UnivWriteRegister(AiUInt32 RegBaseAddr, AiUInt16 Register, AiUInt32 regValue)
{
 (AiUInt32)(Register + RegBaseAddr) = BSWAP32(regValue);
}

void Foo(...)
{
 UnivWriteRegister(BoSta[BoNo].BoRegBasAddr, VINT_EN, Mask);
}

© 2013 Cisco and/or its affiliates. All rights reserved. 20

Control Flow 2: Use early return

foo()
{
 if (condition) {
 <long code>
 } else {
 <short code>
 }
}

foo()
{
 if (!condition) {
 <short code>
 return;
 }
 <long code>
}

© 2013 Cisco and/or its affiliates. All rights reserved. 21

Control Flow 3: Use early continue

for (...) {
 if (condition) {
 <long code>
 } else {
 <short code>
 }
}

for (...) {
 if (!condition) {
 <short code>
 continue;
 }
 <long code>
}

© 2013 Cisco and/or its affiliates. All rights reserved. 22

Control Flow 4: Avoid if-return-else

if (condition)) {
 /* ... */
 return 1;
} else {
 /* ... */
 return 0;
}

if (condition) {
 /* ... */
 return 1;
}
/* ... */
return 0;

© 2013 Cisco and/or its affiliates. All rights reserved. 23

Debugging Code

Don’t clutter the source with trivial debug code once you’re done
developing.

void ReRouter::setName (String str)
{
 debug.in ("ReRouter::setName") ;
 config.copyString (name, str) ;
 debug.print (5, "ReRouter::setName: name =", name) ;
 debug.out ("ReRouter::setName") ;
}

© 2013 Cisco and/or its affiliates. All rights reserved. 24

C++

● Use STL container templates for lists, maps, vectors.

● Never use ‘using namespace’.

● Use bool/true/false.

● If possible, pass arguments by reference.

● Don’t put related classes in separate source files. Keep them
together (within reason).

● Avoid classeritis!

© 2013 Cisco and/or its affiliates. All rights reserved. 25

Example: Classeritis

class MECmdCut : public MECmdClear

class MECmdClear : public MEMultiDirCommand

class MEMultiDirCommand : public MEMultiNodeCommand<MEDirData>

template <class DataType>
class MEMultiNodeCommand : public MENodeCommand

class MENodeCommand : public GFCommand

class MECmdCut : public MECmdDelete

class MECmdDelete : public GFCommand

© 2013 Cisco and/or its affiliates. All rights reserved. 26

Miscellaneous

● Use const religiously.

● Compile with all warnings on (-Wall) and fix the warnings.

● Premature optimization is the root of all evil.

27© 2013 Cisco and/or its affiliates. All rights reserved.

How To Stay Sane

© 2013 Cisco and/or its affiliates. All rights reserved. 28

General Guidelines

● Know yourself: discover your strengths and weaknesses.

● Know when you are at your best/worst and plan accordingly.

● The importance of sleep after learning new things.

● The importance of taking a pool/foosball/dart/bathroom/... break.

© 2013 Cisco and/or its affiliates. All rights reserved. 29

Overtime

● Don't, unless:

– It is of a short duration (< 2 weeks), happens rarely and is to reach a realistic
deadline that is tied to a fixed date like a trade show or something similar.

– You are having fun! But don't neglect your family, friends, social life.

● Structural overtime is pointless: your productivity will remain the same
at best, or (more likely) go down. You get tired, cranky, it's harder to
think and remain concentrated.

● Seek another job if you are forced to do this.

© 2013 Cisco and/or its affiliates. All rights reserved. 30

Questions?

e-mail:

hansverk@cisco.com
hverkuil@xs4all.nl

mailto:hansverk@cisco.com
mailto:hverkuil@xs4all.nl

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

