
Virtual Codec for Video4Linux

Thomas Alexander aan de Wiel

November 14, 2016

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Problem statement & Project goals 4
1.3 Requirements . 4
1.4 Overview . 5

2 Background 6
2.1 Introduction . 6

2.1.1 Video Frames . 6
2.1.2 Color space . 6

2.2 Macro-blocks . 8
2.3 Video-Codec . 9
2.4 Transform coding . 11

2.4.1 Some block-transforms in video-codecs 12
2.4.2 Block-Transform coding . 13

2.5 Quantization . 16
2.5.1 Uniform Quantization . 17

2.6 Motion Compensation & Motion Estimation 19
2.6.1 Introduction . 19

2.7 Entropy Coding . 20
2.7.1 Run-length encoding & Run level coding 20
2.7.2 Huffman coding . 20
2.7.3 Arithmetic coding . 21

2.8 Video-quality . 22
2.8.1 PSNR . 22

3 Design of a new video codec 23
3.1 Method . 23
3.2 Overview of codecs . 23

3.2.1 Patents/Open codecs . 23
3.3 Transform . 25

3.3.1 Walsh-Hadamard Transform 25
3.4 Video frames . 28

3.4.1 Frame types . 28

1

3.5 Entropy coding . 30
3.5.1 Dead-zone quantization & RLC 30
3.5.2 Zig-Zag Scanning . 31

4 Results 32
4.1 Method . 32

4.1.1 Scenes . 32
4.1.2 Quantizer . 33

4.2 PSNR . 35
4.3 Compression-ratio . 36
4.4 Speed . 37
4.5 Percentage P-blocks . 38

5 Discussion 39
5.1 Compression ratio . 39
5.2 Quality . 40
5.3 Speed . 40

6 Conclusion 41
6.1 Future Work . 41

2

Chapter 1

Introduction

1.1 Motivation

Due to the complexity of video and due to applications interfacing with drivers of
the linux kernel for the video hardware, it is hard to find where exactly bugs reside
in the code. Furthermore, due to a wide range of available video hardware, each
supporting different feature sets, it is impractical to test that your application will
work on all hardware that is out there . To alleviate this problem, a linux-driver
called vivid was developed, which is able to emulate all kinds of video-hardware
with specific feature sets. This works great for developers to test their applications
without in fact owning the hardware they would like to support.

Testing applications however is just one part of the problem. To ensure that the
drivers interfacing with certain types of video hardware behave correctly, a compli-
ance tool, v4l2-compliance was developed.

With the advance of smartphones, using accelerators to speed up and/or reduce
power usages becomes increasingly prevalent in SOC’s. This also includes acceler-
ators for video decoding. Testing drivers for this kind of hardware that handles a
certain video codec 1 is not yet fully supported by the v4l2-compliance tool.

To add support for those kind of codec-drivers, without introducing the problem
of a setup with real hardware and getting familiar with it, it is useful to have a vir-
tual kernel driver that implements a particular video codec that is representative for
those hardware-codecs. This driver can then serve as a starting point for implemen-
tation of other virtual codec-drivers.

1A video codec is an electronic circuit or software that compresses or decompresses digital video [1]

3

1.2 Problem statement & Project goals

The problem statement for this project is as follows:

How to develop a fast codec for use in compliance testing of modern video codecs?

Note that is this problem statement is intended for not just a specialization project,
but for extension to a master thesis as well.
Answering this problem statement can be subdivided into three subtasks:

1. Develop a video codec

2. Develop a virtual kernel driver for this video codec

3. Add support for compliance testing of codec drivers to v4l2-compliance

The goal of this specialization project involves only the first subtask, that is, to de-
velop a video-codec for use in a virtual kernel driver. This will then serve as a starting
point for adding support for codec drivers in the v4l2-compliance test tool and test-
ing those drivers.

1.3 Requirements

The requirements regarding the video-codec to be developed are as follows:

1. The video codec should be fast. Fast in this context is meant as the video codec
being able to encode/decode 720p video at a 30fps frame rate on a modern
laptop.

2. The video codec should include characteristics of modern video codecs. This
among other things includes:

(a) reference frames
(b) emulation of macro-block behavior
(c) Variable compressed sizes of macro-blocks
(d) On-the-fly resolution switching

3. Support for two modes:

(a) Mode 1, in which the headers for decoding the video frames are included
(b) Mode 2, in which the headers for decoding the video frames are lacking

in the output.

4. The video codec should be well suited to be implemented using integer arith-
metic only. 2.

2Since it will eventually run in kernel mode where floating point operations cannot be used

4

5. The video codec should provide video with an acceptable quality.

6. The video codec should be ’simple’: the virtual codec driver will be integrated
into the kernel.

7. The video codec should be open-source (GPLv2)

1.4 Overview

Chapter 2 will cover the background of video codecs. Chapter 3 will give an overview
of several video codecs, summarize certain design decisions and cover the developed
codec. Results of our developed video codec can be found in Chapter 4 and are
reflected upon in Chapter 5. This report will be concluded in Chapter 6.

5

Chapter 2

Background

I n its simplest form, digital video is a set of video frames (still images). A file containing
digital video without any compression applied is called raw video. Even though there

is no compression applied, several ways exist to represent the video frames. With compres-
sion applied, we enter the world of video-codecs which will be our main focus.

In this chapter we will start with explaining some main concepts behind digital video.
We then continue by sketching the outline and explaining the concepts behind a general
video codec.

2.1 Introduction

2.1.1 Video Frames

A digital video is a set of video frames. A video frame is a still image, that itself
consists out of pixels/pels. The pixels are the sampled points of the scene that was
captured on video.
This is schematically illustrated in Figure 2.1.

2.1.2 Color space

Unlike the early days of video, nowadays virtually all videos are recorded in color.
The human eye contains three types of receptors (cones) that are each sensitive to
mainly one color. Colors can therefore be approximately represented for us hu-
mans, using 3 numbers (each number corresponding to the excitation of a type of
receptor)[2].

A color space is what defines the link between objective measurements of colors
(wavelengths) and our perception of those colors. When using 3 components, then
those 3 components specify the location of a certain color in the color space. The
gamut of a color space defines the range of perceivable colors that can be represented.

6

Frame

pixel

Figure 2.1: Schematic overview of a digital video

There are multiple color spaces available, each with their own purpose. One com-
mon family of color spaces is the RGB family, and is used in virtually every computer
or TV system. [3].

2.1.2.1 The RGB-color

The family of RGB color spaces uses three components, Red, Green and Blue to
describe a color. Usually each component is encoded using the same amount of bits.
We can distinguish between a linear RGB color space and a non-linear one. Linear
here means, that to double the intensity of a certain color component, one simply
doubles the value of that component. However doubling the intensity, does not
necessarily correspond to a doubled intensity for us, humans. A non-linear RGB
color space specifies a non-linear transfer function such that the color space becomes
visually linear. Usually we refer to the components of those non-linear RGB color
spaces as R′G′B′ instead of just RGB for the linear variants.

7

2.1.2.2 Y ′CbCr

Y ′CbCr is an encoding of an R′G′B′ color space, and is sometimes also denoted as
YCbCr, Y ′UV or simply YUV. The three components are:

1. Y ′ : luminance component

2. Cb: chrominance, the difference between the blue component and Y ′

3. Cr: chrominance, the difference between the red component and Y ′

The advantage of encoding a color in this way, is that one can take the human visual
system into account: the human eye is very sensitive to changes in the luminance
component and less sensitive to change in the chrominance components.
Once can therefore use a lower resolution for the chrominance components than for
the luminance component, without a significant perceptive loss in quality. This is
referred to as chroma-subsampling and provides compression based on the character-
istics of the human visual system.

2.1.2.2.1 Notation Chroma-subsampling is usually denoted by a string of 3 in-
tegers separated by colons: a:b:c. In this string the 3 integers a, b, c represent the
following:

1. a denotes the horizontal luma sampling rate with respect to a reference sam-
pling rate

2. b denotes the horizontal chroma sampling with respect to a reference sampling
rate

3. c denotes the vertical chroma sampling. Either the same as b (No vertical
subsampling) or zero (vertical subsampling by 2).

Some common chroma-subsampling schemes include

1. 4:4:4 (no subsampling)

2. 4:2:2

3. 4:1:1

4. 4:2:0

2.2 Macro-blocks

A macro block refers to a grouping of luma and chroma (sub)blocks that cover a
certain area. [4]. Macro blocks commonly refer to an organization of a 4:2:0 sub-
sampled YUV video frame. Since the two chroma planes have half the amount of
samples in both the vertical and horizontal direction, an 8 × 8 block in one of the

8

chroma planes, corresponds to a larger area in the original frame than an 8×8 block
in the luma plane.
A macro-block based on a 4:2:0 chroma subsampling usually consists out of the
following :

1. four 8× 8 blocks of luma samples

2. one 8× 8 block of chroma samples of each chroma plane

2.3 Video-Codec

Video codecs are all about compression: storing the original video using less space.
Compression itself can be subdivided into two categories:

• lossless: the video is compressed by removing statistical redundancy. It is pos-
sible to exactly recover the original video

• lossy: Besides moving redundancy, some information is thrown away in lossy
compression. Its compressed result is an approximation of the original video
when decompressed.

Due to the high-bandwidth requirements of uncompressed video, and due to lossless
compression only giving a moderate decrease in space [5], video codecs usually make
use of lossy compression as well.
A video contains 3 dimensions which are represented by:

1. the spatial domain (2D)

2. the temporal domain

Further compression of video can be achieved by reducing redundancy in those do-
mains.
The major video codecs tend to do redundancy removal in those two domains separately[6].
Reduction in the temporal domain is usually done using techniques called Motion
compensation and Motion Estimation, whereas reduction in the spatial domain is usu-
ally done using Transform coding.
Once Motion compensation and Transform coding have taken place, the obtained
representation can be entropy-coded, that is, the statistical redundancy is removed
(lossless compression).
A general block diagram of a video codec as just described is shown in Figure 2.2
and will serve as a reference for development of our own video-codec.

9

Figure 2.2: A reference codec, [5, 6, 7]

10

2.4 Transform coding

Transform coding is a compression technique that reduces the spatial redundancy
in images/video frames. The idea is based on the observation that pixels in a small
section of an image/picture are usually highly correlated [8].
By using suitable transform, the data from the spatial domain can be transformed
into another domain, in which the pixel-energy is mostly concentrated in a small
number of coefficients for typical input data[4].
Take for example the 8× 8 block as indicated in the Lena image, see fig. 2.3.

(a) Lena image, with indicated block to be
transformed

(b) Enlarged selected block

Figure 2.3: Lena image and selected block

By applying a discrete cosine transform (see section 2.4.2), we obtain the following
coefficients 1



50 40 46 47 75 62 69 94
45 39 35 40 87 87 65 86
48 37 35 38 55 90 65 50
76 47 40 42 68 112 77 56
90 72 66 66 90 108 74 53
98 84 84 91 83 72 57 66
79 86 90 80 76 55 65 113
57 54 60 57 64 77 107 160


Figure 2.4: Block data



555 −66 21 34 15 −20 24 0
−75 −23 −24 48 −9 −5 3 4
2 −54 35 −66 29 −16 −8 13
31 58 −21 −13 17 −3 −7 7
9 −33 16 15 −7 6 3 2
−10 18 6 −13 0 5 0 0
−13 4 1 −2 −3 14 −2 −5
−4 7 −4 −6 −7 0 −2 2


Figure 2.5: DCT coefficients

1Rounded to integer values

11

We can clearly see that the highest coefficients are concentrated in a small num-
ber of coefficients in the upper left corner. These coefficients correspond to the
lower spatial frequencies of the image.
Transformation of the data itself does not achieve any compression. However, if
only a few coefficients carry most of the energy, most of the other coefficients can be
neglected/given a lower priority (which saves bits to encode them), which is referred
to as quantization.
It turns out that the human eye is less sensitive to information contained in the
higher spatial frequencies[7]. To for example lossy compress the data obtained by
using the DCT as we did above, we could discard/assign far fewer bits to the higher
spatial frequencies. This is for example how JPEG’s lossy compression works. Quan-
tizing the transformed coefficients with the the default JPEG quantization matrix
results in 

35 −6 2 2 1 −1 0 0
−6 −2 −2 3 0 0 0 0
0 −4 2 −3 1 0 0 0
2 3 −1 0 0 0 0 0
1 −2 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


As can be observed, the lower right part of the matrix contains a substantial amount
of zeros, which can be efficiently compressed. In order to approximate/reconstruct
the original input one should dequantize the coefficients and use apply an inverse
transform. If one dequantizes the coefficients in section 2.4 and applies the inverse
DCT, one obtains section 2.4. Observe the striking similarity between the two
pictures in fig. 2.6.
Transformation can be done on a block-basis (block transform coding), in which
a frame is decomposed into smaller blocks and in which each block is transformed
independently. Besides block transform coding, there also exist other transform
methods based on for example wavelet analysis (works on the whole image) and
pyramid schemes[9]. Since our codec should emulate macro-block behavior, we
will restrict our focus to block-based transforms.

2.4.1 Some block-transforms in video-codecs

Relevant/Lightweight block-transforms in video codecs are:
1. Discrete Cosine Transform(DCT). This is a very popular block transform and

is used in the MPEG compression schemes, in the h26x codec family (h261,
h262, h263)[10, 11, 12]. and in the open codec theora as well [13]. Further-
more the open codec “thor” developed by cisco, VP8 and the commerical h264
codec are using an integer transform that approximates the DCT. [14, 15]. An
open codec in development, “daala”, is based on the DCT as well (Although
a lapped variant).

12

(a) Original block (b) Block after inverse transformation of
quantized coefficients

Figure 2.6: Original and decompressed block

2. Discrete Walsh Hadamard Transform (DWHT): The DWHT finds it use
for example in intra-coding in H264/AVC [4]. It is furthermore applied in
VP8, in which it is applied on the coefficients produced by a DCT transform
(secondary transform)[15].

Of those two transforms, the DCT has better energy compaction properties than
the DWHT. [16, pp. 419].

2.4.2 Block-Transform coding

In block-transform coding a reversible, linear transformation is used to transform
the data[17]. A general 2-dimensional linear transform can be defined as

Y = AXAT (2.1)

with A the transform matrix, X the matrix with input data and Y the matrix con-
taining the transform coefficients.
The ideal linear transform would pack as much image energy into as few coefficients
as possible, which is referred to as energy compaction. It can be shown that the KLT
(Karhunen-Loeve Transform) is optimal in the sense of energy-compaction. Its use
in compression however is very limited since the transform is dependent on the data
to be transformed. That means that when applying an inverse transformation to
retrieve the original data, additional information to perform the inverse transforma-
tion is required.[11]
We will therefore restrict our discussion to the already mentioned block transforms
in section 2.4.1.

13

2.4.2.1 The Discrete-Cosine-Transform

The 1D DCT of a sequence x(n) with N samples in its most popular form can be
defined as [18, 4]

X(k) =

N−1∑
n=0

√
2Nϵ(n)x(n) cos

[
π

N
n

(
k +

1

2

)]
(2.2)

(2.3)

with

ϵ(n) =

{
1√
2

n = 0

1 elsewhere
(2.4)

This can be written in matrix form as:

F = Qx⃗ (2.5)

Where x⃗ is an N-dimensional vector and Q is the N ×N DCT matrix with

Qij =
√
2Nϵ(j) cos

[
π

N
j

(
i+

1

2

)]
The matrix Q is orthonormal, so the inverse DCT transform is obtained by multi-
plication with QT .
Extension to 2D follows eq. (2.1).

2.4.2.2 Walsh-Hadamard Transform

The Walsh-Hadamard transform is based on the Hadamard matrix H, which con-
tains solely 1’s and -1’s. The naturally ordered Hadamard matrix H2M of size 2M ×
2M can be recursively defined in terms of HM if M a power of 2:

H2M =

(
HM HM

HM −HM

)
(2.6)

With H1 = 1. eqs. (2.7) to (2.9) show the naturally ordered Hadamard matrices
for M ∈ {1, 2, 4}.

H1 =
(
1
)

(2.7)

H2 =

(
1 1
1 −1

)
(2.8)

H4 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 (2.9)

14

2.4.2.2.1 Walsh-functions A complete set of N = 2M discrete Walsh functions
wal(m,n) can be defined as follows [19]:

wal(0, n) = 1, for n = 1, 2, . . . , N

wal(1, n) =
{
1 for n = 1, 2, . . . N/2

−1 for n = N
2 + 1, N

2 + 2, . . . N

wal(m,n) = wal(⌊m
2
⌋, 2n) · wal(m− 2⌊m

2
⌋, n)

With m = 0, 1, . . . , N − 1 and n = 1, 2, . . . , N .
Plotting those for N = 4 results in fig. 2.7.

1 2 3 4

−1

0

1

x

y

(a) wal(0, n)

1 2 3 4

−1

0

1

x

y

(b) wal(1, n)

1 2 3 4

−1

0

1

x

y

(c) wal(2, n)

1 2 3 4

−1

0

1

x

y

(d) wal(3, n)

Figure 2.7: Walsh functions for N = 4

Observe that with increasing m, we also have an increasing amount zero-crossings
wal(m,n). The amount of zero-crossings gives rise to the term sequency, the amount
of sign changes, which gives a frequency interpretation of those function[20].
If we interpret each row of the Hadamard matrix as a wave form, we get ”pulse
wave-forms” similar to Walsh-functions. Observe how for N = 4 the set of Walsh
functions exactly represent the wave-forms in the H4 (see eq. (2.9)). If we look
at the rows of H4 we observe that the amount of sign changes (0, 4, 1, 2) is not
in increasing order. This is due to the natural ordering of the Hadamard matrix.
Commonly used in image processing is the sequency-ordered Hadamard matrix in
which the sign changes per row is strictly increasing.
The Walsh-Hadamard transform of a vector x⃗ ∈ R2M can be achieved by multiply-

15

ing it with the sequency ordered Hadamard matrix HM :

x⃗′ = Hx⃗ (2.10)

In which x⃗′ denotes the transformed vector. Again, the 2D version of the Walsh
Hadamard transform follows eq. (2.1). Since the sequency ordered Hadamard ma-
trix is symmetric [19] and orthogonal:

HT
m ·Hm = M2I

Inverse transformation can therefore be achieved by multiplying the transformed
vector x⃗′ with 1

M2 IM .

2.5 Quantization

Quantization is the process of mapping a range of input values to a smaller set of
output values. Quantization is therefore an irreversible process, since several distinct
input values might be mapped to the very same output value. At the same time,
quantization makes it possible to compress the input data more: after quantization,
less bits are required to represent all possible values.
Input values to a quantizer might have a continuous range, as is the case in for
example ADC’s. In the context of video codecs, however, the quantizer will be fed
input values with a discrete amplitude. Hence the quantizer will further restrict the
range of possible discrete values.
In image coding the quantization should give less priority/assign fewer bits to coef-
ficients that are visually unimportant, while retaining/slightly assign fewer bits the
more significant coefficients. Which transform coefficients are considered impor-
tant is not only dependent on the desired compression to be obtained, but it is also
dependent on the human visual system. Certain coefficients of the transformed data
are of more importance for the human eye than others.
We can distinguish two types of quantization:

1. Scalar quantization: as it name implies, scalar quantization scales every co-
efficient(scalar) independently. The output of scalar quantization is an index
corresponding a certain value of the quantized coefficient.

2. Vector quantization: instead of quantizing every scaling seperately, vector quan-
tization quantizes vectors of coefficients. The output of vector quantization are
indices as well, however they correspond to vectors instead of scalar values.

Scalar quantization is the quantization type typically used in video codecs [21] and
is easier to implement. We will therefore not cover vector quantization. Scalar
quantization can be further subdivided into uniform and non-uniform quantizers.

16

−4∆ −3∆ −2∆ −1∆

1∆ 2∆ 3∆ 4∆

1

2

3

4

−4

−3

−2

−1

x

Q(x)

(a) Midtread Quantizer

−4∆ −3∆ −2∆ −1∆

1∆ 2∆ 3∆ 4∆

1

2

3

4

−4

−3

−2

−1

x

Q(x)

(b) Midriser Quantizer

Figure 2.8: Two uniform quantizers

2.5.1 Uniform Quantization

An uniform quantizer makes use of constant Step-size ∆ to map input values to
a reduced set of output values. We can distinguish between two types of uniform
quantizers: the mid-tread and mid-riser quantizer, see also fig. 2.8.
A mid-riser quantizer can be described with the following formula:

Q(x) = ∆

(
⌊ x
∆
⌋+ 1

2

)
A mid-tread quantizer on the other hand can be described using:

Q(x) = ∆⌊ x
∆

+
1

2
⌋

The difference between the two quantizers lies in how they map values around zero
to their respective output values. Effectively, mid-riser quantizers cannot map their
inputs to a zero output, whereas mid-tread quantizer can.

2.5.1.1 Non-uniform quantizer

In non-uniform quantizers the step-size ∆ is non-constant. One commonly used
non-uniform quantizer is the dead-zone-quantizer. Unlike the uniform quantizers,
a broader range around zero is mapped to zero, see also fig. 2.9.
The deadzone-quantizers finds it use in video codecs, where it is sometimes desired
that small values are quantized to zero in order to obtain a better compression ratio.
By using a deadzone-quantizer, the encoder will not unnecessarily allocate bits for

17

−4∆ −3∆ −2∆ −1∆

1∆ 2∆ 3∆ 4∆

1

2

3

4

−4

−3

−2

−1

x

Q(x)

Figure 2.9: Deadzone-quantizer

noisy signals around zero[4, pp. 86] (signals around zero that are not noise however,
will be quantized more coarsly with a deadzone quantizer).

18

2.6 Motion Compensation & Motion Estimation

2.6.1 Introduction

We have introduced transform coding as a method to remove spatial redundancy.
In principle one could apply transform coding to every frame of a video, but in
practice it turns out that one can obtain more compression by exploiting temporal
redundancy as well[4].
The main idea behind removing temporal redundancy is that adjacent frames in a
video are usually highly correlated[22]. By predicting a frame based on a nearby
frame it is possible to achieve a higher coding efficiency.
The simplest method would be to predict a frame by encoded the difference between
the frame and a certain reference frame. This reference frame, could for example
be the previous frame. Since adjacent frames usually are very similar, the difference
between them should usually be small and be easily compressable.
Most video codecs, however use more advanced techniques called Motion Estimation
(ME) followed by Motion Compensation(MC) to reduce the temporal redundancy.
ME tries to find out how parts in the reference frame(s) have moved with respect the
current frame. Motion vectors describe how certain parts of an (or even the whole)
image have moved with respect to a reference frame (see fig. 2.2). Motion vectors
can be as simple as describing only translational movement, up to specifying rotation.

MC uses the motion vectors from the motion estimation to compensate for move-
ment between the reference frame(s) and the frame being encoded. If for example
the current frame has moved to the right (due to camera panning) with respect to a
reference frame, this could be described by a motion vector specifying the translation
for the the whole frame. The difference of the reference frame and the motion com-
pensated current frame (translate it back as much as the motion vector specifies) will
be smaller then taking the direct difference between the reference frame and current
frame: in this way ME + MC can be used to achieve a better compression ratio.

A reference frame should be a frame that is decoded before the frame that is cur-
rently considered. This does not imply that the frame is also displayed before the
current frame in the decoding process. This motivates the categorization of frames
into:

1. I-frame: intra-frame. Encodes a whole frame, without the use of reference
frames

2. P-frame: inter frame. Encoded using a reference frame that is displayed in
the past.

3. B-frame: inter frame. Encoding using references frames in the past and fu-
ture.

It turns out that motion estimation is computationally the most expensive part of
the video encoding process, and can take up to 90% of the computation time when
implemented in software [23, 24].

19

2.7 Entropy Coding

To store the coefficients obtained after quantization video codecs typically perform
entropy coding to reduce the statistical redundancy.
Popular entropy-coding methods include:

1. Run-level coding

2. Arithmetic-coding

3. Huffman coding

2.7.1 Run-length encoding & Run level coding

Run length encoding is a lossless method to compress data based on replacing re-
peating data symbols with the the amount of repetitions and the symbol that is
repeated. For example, consider the sequence

{5, 5, 5, 4, 4, 4, 4, 4, 4, 4}

This sequence could be represented as

{{3, 5}, {7, 4}}

Where each tuple {a, b} describes the amount of repetitions (a) and the value (b)
being repeated. This compression method is particularly effective for data with long
runs of the same symbol.
As mentioned before, transform coding is often targeted at producing zero coeffi-
cients. It would therefore be useful to not encode those zeros. If we consider the
following sequence with a substantial amount of zeros:

{5, 0, 0, 0, 0, 3, 4, 0, 0, 0, 0, 5}

This sequence could be compressed by only stating where the non-zero components
are located using tuples like ({offset,value}). In this case that results in:

{{0, 5}, {5, 3}, {6, 4}, {11, 5}

This form of lossless compression is called run-level coding.

2.7.2 Huffman coding

Named after David Huffman, Huffman coding tries to compress data by replac-
ing symbols that are likely to occur with shorter codes and less-frequent occurring
symbols with longer codes. Huffman coding is a form of prefix-codes [25]
A prefix code for a set of symbols is a collection of code words (one per symbol) in
which no code-word forms a prefix of another code-word.

20

Consider an alphabet of symbols, S. In order to use Huffman coding, one needs
statistics about the frequency of occurrence of the letters of this alphabet to be en-
coded, F . Using this information, a Huffman tree is created using the following
method [26]:

Algorithm 1 Huffman Tree
1: procedure HuffmanTree
2: if |S| = 2 then
3: Encode one letter with 0, the other with 1
4: else
5: Create a forest with a single node tree for each symbol in S
6: label each tree with the frequency of the corresponding symbol
7: while More than one tree in the forest do
8: select the two trees (a,b) labeled with the lowest frequencies
9: remove those trees from the forest

10: Create a new symbol ω ← letter with fω = fa + fb
11: create a node corresponding to ω with a, b as its children
12: Label the resulting tree with fω
13: Insert the tree in the forest
14: end while
15: end if return The only tree left in the forest.
16: end procedure

The prefix code for a symbol can then be found by traversing the tree to the node
corresponding to that symbol, recording a ’0’ every time going to a left node, and a
’1’ for a right node.
This will then result in an optimal prefix code for the symbol [25].

2.7.2.1 Video codecs

In for example the H261 (but also theora) video codec, the quantized transform
coefficients are run-level coded. Common occurring run-level symbols are assigned
a Huffman code, whereas symbols that are not considered common are then sepa-
rately encoded using an escape sequence. This combination of run-level-coding and
Huffman coding is a form of Variable-Length-Coding (VLC).

2.7.3 Arithmetic coding

Unlike Huffman coding, which assigns codes on a symbol bases, arithmetic coding
assigns one fractional number (between 0 and 1) to multiple symbols at once[27].
This makes it possible that a symbol can be encoded using less than 1 bit [28],
which is not possible in Huffman Coding, as the smallest prefix code is 1-bit in
size. Implementation-wise, arithmetic coding is more complex than Huffman cod-
ing [29], and explaining the mathematical concepts behind it, is out of scope of this
report.

21

2.8 Video-quality

With lossy compression it is possible to trade video quality for compression ratio.
In order to make sure the quality of a video meets the demands, several statistics ex-
ist. Common objective statistics include the Mean Squared Error(MSR) or Peak-
Signal-to-Noise-ratio (PSNR). Do note that those metrics do not always corre-
spond well to the quality that we as humans perceive [30].
Since the video-quality of our codec is to be acceptable, we will restrict ourselves to
the most popular objective statistic, the PSNR.

2.8.1 PSNR

The PSNR of a video frame is defined as follows[30]:

PSNR = 10 · log10
L2

MSE
(2.11)

with L the dynamic range of the pixel values and MSE being the mean squared
error:

MSE =
1

N

N∑
i=1

(xi − yi)
2 (2.12)

In which N is the total amount of pixels, xi the ith pixel in the decoded frame and
yi the pixel in the original frame.
In tests it has been shown that PSNR values higher than 20dB correspond to an
‘acceptable’ video quality [31].

22

Chapter 3

Design of a new video codec

This chapter will give an overview of the design-process of our video codec. It will
do so by starting with a selection and comparison of several techniques that are
candidates for being used in our codec, followed by a more practical description of
how those techniques were applied.

3.1 Method

In order to develop a fast, for modern video codecs representative, video codec sev-
eral tasks need to be completed

1. Produce an overview of popular modern video codecs and their main charac-
teristics

2. Comparison and selection of techniques regarding following:

(a) Spatial compression (Transform coding)
(b) Temporal compression (Reference frames)
(c) Entropy coding

3. Combine the selected techniques into a custom video codec.

3.2 Overview of codecs

In this section we will look at a selection of (modern) codecs. This selection is partly
based on popularity, but also on the patents/“openness” of a codec.

3.2.1 Patents/Open codecs

It is worth to pay some attention to the aspect of licenses, patents and the conditions
of using a certain codec. Since the codec to be developed is to be part of the Linux
kernel, it is important that the ideas and techniques used do not infringe any patents.

23

For example, US patents expire after 20 years [32], meaning that many specific
techniques as in current video-codecs are likely to be covered by patents.
Furthermore if a codec is open source, this does not mean that one can copy and use
this code in the Linux kernel as this might result in conflicts between the licensing
of the Linux kernel (GPLv2) and that of the codec.

3.2.1.1 Open codecs

With the increase of devices connected to the internet, the availability of a codec
that can be used freely increases (motivate). Several open codecs are out there/in
development. Two examples are:

1. Theora
2. Daala

Both codecs are/have been developed by the Xiph.Org Foundation.

3.2.1.2 Commercial codecs

Popular commerical codecs include:
1. H26x family of codecs, developed by ITU-T.
2. MPEG family of codecs developed by the Moving Picture Experts Group.
3. VPx family of codecs: first developed by ON2, from VP8 onwards owned and

developed by google.

3.2.1.3 Overview codec characteristics

In this overview we consider several open (source) codecs, popular codecs as well as
old codecs (interesting due to the expiration of their patents).

Table 3.1: Overview codec characteristics

Codec Transform B-Frames P-Frames Entropy coder
Theora DCT II (8x8) × ✓ RLC + huffman
Daala Lapped DCT ✓ ✓ Arithmetic coding
VP8 DCT (4x4) followed by WHT(4x4) × ✓ Arithmetic Coding
h264/MPEG4 AVC Integer approximation DCT (4x4) ✓ ✓ Arithmetic Coding
h261 DCT (8x8) × ✓ RLC + huffman
MPEG1 DCT (8x8) ✓ ✓ RLC + huffman
MPEG2 DCT ✓ ✓ RLC + huffman

We observe how the codecs, not from the MPEG family do not include B-frames.
B-frame coding tools have heavily been patented 1, which might explain their ab-
sence in those codecs. Furthermore we observe the fast majority uses a variant of the

1urlhttp://www.avs.org.cn/avsdoc/2003-7-30/Cliff.pdf

24

DCT as their main transform. Whereas modern codecs use arithmetic coding for
their entropy coders, older codecs like theora and h261 are based on variable length
coded huffman data.

3.3 Transform

As indicated in section 2.4.1, the most popular block-transform used in video cod-
ing is the DCT. This, however does not mean that we should solely focus on this
transform.
As indicated in section 1.3, the codec to be developed cannot use floating-point
operations. The DCT, which uses multiplications/division with irrational numbers,
would have to be approximated using fixed-point arithmetic. Although it is not
impossible, this makes it more complex though. In general, transformations that
are not integer based lead to calculation errors which can cause differences between
the encoder and the decoder leading to a phenomenon drift. With an integer based
transform, this will not happen as long as all calculations can be carried out without
underflow/overflow.
Integer based transforms include the 4x4 integer approximation of the DCT as in-
troduced in H264 as well as the Walsh Hadamard Transform. Both transforms
can be implemented without multiplications and divisions. The Walsh Hadamard
transform can even be implemented without the use of bit-shifts.
Besides implementability using integer arithmetic only, the complexity of the trans-
form is of utmost importance as well. It turns out that for both the DCT family of
transforms as well as for the Walsh-Hadamard Transform a fast implementation of
the transform exists.
For the development of our codec the DWHT was chosen:

• Due to its definition, it can be directly implemented using integer arithmetic

• Mathematically and computation wise, the transform is simple

In principle one could have argued the same for the 4x4 DCT transform as in H264.
However as the codec needs to be able to be included in the Linux kernel, use of
technology as introduced by H264 might lead to patent-infringement.

3.3.1 Walsh-Hadamard Transform

In our codec we make use of the analogy between sequency and frequency. [20]
shows that magnitude of the transformed coefficients decreases with increasing se-
quency, which is visualized and indeed confirmed by the example in fig. 3.1.
Hence the sequency-ordered Walsh-Hadamard Transform has been chosen for use
in our codec.

3.3.1.1 Fast Walsh Hadamard Transform

Naive implementation of the Walsh-Hadamard Transform as in eq. (2.10) results
in an O(N2) algorithm. One can do better, by deriving a fast Walsh-Hadamard

25

(a) Original image (b) Magnitude of the sequency-ordered
Walsh-Transform coefficients of fig. 3.1a

Figure 3.1: Example Image and its Walsh-Hadamard transform

transform analogously to famous FFT (Fast Fourier Transform). This, however
results in an output that is not sequency ordered [19].
Several attempts have been made to produce a fast transform that produces sequency
ordered output data [33, 34, 19]. The first two attempts however, require that one
bit-reveres the output. [19] derives a sequency ordered algorithm by decomposing
the sequency ordered Hadamard Matrice of size 2N×2N intoN sparse matrices. The
complete transform is then performed in N stages, in which each stage corresponds
with multiplication by one of the sparse matrices.
For an 8 input size, the decomposition of the 8 × 8 sequency-ordered Hadamard
Matrix is as follows (-1 is replaced by simply a - for formatting reasons):

Hsequency =



1 1 1 1 1 1 1 1
1 1 1 1 − − − −
1 1 − − − − 1 1
1 1 − − 1 1 − −
1 − − 1 1 − − 1
1 − − 1 − 1 1 −
1 − 1 − − 1 − 1
1 − 1 − 1 − 1 −


= H1 ·H2 ·H3 (3.1)

With

26

H1 =



1 1
1 −

1 −
1 1

1 1
1 −

1 −
1 1


H2 =



1 1
1 1

1 −
1 −

1 −
1 −

1 1
1 1


H3 =



1 1
1 1

1 1
1 1

1 −
1 −

1 −
1 −


Transformation of a vector x⃗ can then be achieved by

X⃗ = H1H2H3x⃗ (3.2)
This leads to the flow diagram as in fig. 3.2 for an 8 input Walsh-Hadamard Trans-
form2. in which a dotted line respectively a solid line mean that the corresponding

x0

x1

x2

x3

x4

x5

x6

x7

X0

X1

X2

X3

X4

X5

X6

X7

Figure 3.2: Fast sequency ordered Walsh-Hadamard Transform

value is multiplied by -1 and 1. Every node except the input/output nodes represent
an addition. Note that only O(N log(N)) operations have to be performed.
Transformation of a 2D-block of data is achieved by applying the fast walsh Hadamard
transform row-wise, followed by a column-wise transformation. This corresponds to
eq. (2.1). Inverse transformation is obtained by using the same transform algorithm,
altered with a scaling factor.

3.3.1.2 Block-size

As [17] indicates, with increasing block size, one obtains a higher level of com-
pression. Increasing the block size however comes at a higher cost as well (more
calculations are necessary per pixel). The most popular block sizes are 8 × 8 and
16× 16. In our codec we have chosen for a block-size of 8× 8, to have a block-size
that is representable but not too computationally intensive. Transformation of an
8×8 block is then performed transforming each row, followed by transforming each
column.

2Note that this flow diagram was already present in [20], only reversed

27

3.4 Video frames

Frames in our codec consist out of two planes, similar to Y’UV420. Y’UV420p,
which has a chroma subsampling of 4:2:0 (see section 2.1.2.2), organizes the Y’, U
and V coefficients all separately in three planes (no interleaving). In our case, The
layout of a frame can be described as:

Table 3.2: Layout of a frame

Frame Header
Run-level coded Y’ coefficients
Run-level coded U coefficients
Run-level coded V coefficients

Each plane contains the coefficients of all 8× 8 blocks. The first 64 coefficients that
correspond to the the coefficients of the first block in the frame (upper-left corner).
The second sequence of 64 coefficients correspond to the 2nd block (right of the first
block) and so on.

3.4.1 Frame types

Our codec has two types of frames: I-frames and P-frames. In order to introduce
references frames, our codec is limited to such called ”P-frames”. Note that this is
not unnecessary an unrealistic feature, since several modern codecs do not feature
bidirectional frames either.
The type of blocks that make up a frame are

1. I-block: a block containing 8x8 samples of the current frame to be compressed

2. P-block: a block containing 8x8 samples. To keep the codec lightweight 3

it was decided to restrict the search area for motion estimation to the corre-
sponding block in the reference frame. A p-block is therefore obtained by
taking the difference of the samples from the current block with samples of
the corresponding block in the previous frame.

The first frame in a video is always an I-frame, since there is no reference frame
available yet. I-Frames solely consist of I-blocks. A P-frame is defined as a frame
containing a mix of I and P-blocks. How many blocks are P-blocks depends on the
frame to be compressed, see section 3.4.1.1. Our codec is forced to insert an I-frame
after every N P-frames, in which N can be configured. In this way a frame can get
lost without making it impossible to decode the rest of the video.
Categorization into I-frame and P-frames is not visible at the bit-stream level: since
it is necessary for the decoder to know whether the current block to be decoder is
a P or I block, this information needs to be present at a block-level. Replication

3see section 2.6.1, motion estimation can take up to 90% of the encoding time

28

this information in the frame-header is therefore unnecessary. This might change
if more complex features are added, which require information about whether the
current frame needs a reference frame to be decoded.

3.4.1.1 Decision making

In order to decide whether a block is coded as an I-block/P-block, one should have
be able to predict the size of the resulting I/P-block. Simply encoding the current
block in both variants, comparing their sizes imposes a lot of additional overhead.
Our encoder therefore, analogously to H261 [6], calculates a heuristic that is based
on the variance. The variance is calculated for both the block to be encoded and the
difference-block (contains the difference between the current block to be encoded and
the block of the reference frame corresponding to the current block). The reasoning
behind using the variance is that it measures the spread of the data. Roughly, data
that has a higher spread has a higher frequency/sequency content and therefore has
more non-zero coefficients than data with a lower spread .

3.4.1.2 Transformation of I- & P-blocks

In case of an I-Block, the coefficients that are being transformed (8 bit) can range
from 0 to 255. The maximum value obtainable through Hadamard Transformation
can be found from eqs. (3.1) and (3.2). Note that the following situation results in
the maximum value for the first coefficient of the transformed vector



1 1 1 1 1 1 1 1
1 1 1 1 − − − −
1 1 − − − − 1 1
1 1 − − 1 1 − −
1 − − 1 1 − − 1
1 − − 1 − 1 1 −
1 − 1 − − 1 − 1
1 − 1 − 1 − 1 −


·
(
255, 255, 255, 255, 255, 255, 255, 255

)T

(3.3)

Hence, in general, the maximum obtainable value with a Hadamard Matrix ofN×N
is N · 255. The minimum value obtainable is −N

2 255: we cannot get any smaller,
since each row contains at least 4 ’1’s and 4 ’-1”s. This means that transforming
them as is, leads to asymmetry between the smallest and biggest value obtainable.
By adding a bias of -128, we obtain more symmetry which makes it easier to encode
it using two’s complement.
In case of a P-Block, the coefficients that are being transformed can range from -
255 to 255: that is, the coefficients have twice the range of the coefficients that are
being coded in an I block. Symmetry is already implied by the range, hence adding
a bias is not necessary when transforming P-block coefficients.

29

3.5 Entropy coding

In order to actually profit transforming our data, we need to apply some form of en-
tropy coding. Arithmetic coding has not been considered to be a viable option: not
only does it use of fractional numbers make it hard to avoid floating point arithmetic,
but the performance (speed-wise) is also lower than that of a huffman coder.
The entropy coding as used in our codec is designed to be simple, and only makes use
of a run-level coder. Since the target is not necessarily to achieve a good compression
ratio, but to achieve variable compressed block sizes, it has been decided to omit a
huffman coder which as applied in for example h261 and theora. Due to the use
of a walsh Hadamard transform, instead of the DCT, it is not possible to reuse
quantization tables/huffman dictionaries from for example theora. Proper huffman
coding would therefore require analysis of a large amount of video data to detect
common occurring symbol sequences. Furthermore during testing of the codec, it
was found that a deadzone-quantizer resulted in a reasonable compression ratio (see
section 3.5.1.1)

3.5.1 Dead-zone quantization & RLC

3.5.1.1 Quantization

Quantization in our codec happens on a block-basis (8 × 8). For every coefficient,
a seperate step-size can be defined. This gives rise to an 8 × 8 quantization matrix
Q, in which element represents the stepsize to be used by the quantizer for the
corresponding coefficient in the 8× 8 transformed block.
The step-size as used by the quantizer for a certain coefficient is always a power of 2,
which makes it possible to quantize the coefficients using (right) bit-shifts instead
of usually expensive integer division. Elements of Q are therefore representing the
amount of bits that the quantizer should shift the coefficient to obtain the desired
divison by the power of 2.
The quantizer as used in our codec is a deadzone quantizer: it was found during
testing, that when no deadzone quantizer is used, the size of the compressed video
is around the same size as the original input. This was caused by runs of zero being
broken by a small coefficient.
By including a deadzone quantizer, the runs of zero were less frequently broken by
non-zero coefficients, resulting in a significant coding efficiency (see section 5.1).
n.

3.5.1.2 RLC

The Run-Level Coding as used in our codec codes every non-zero coefficient in a
16 bit integer. 4 bits of this integer are reserved for indicating the length of zeros
and 12 bits for the quantized coefficient (As can be seen from section 3.4.1.2, the
maximum/minimum value will be 127 · 8/ −128 · 8 respectively, taking 12 bits to
encode)
The maximum run is 14: the value 15 is reserved for zero sequences longer than 14.
If for example, a block to be transformed is constant (only one unique value), then

30

15-12 11-0
run value

Table 3.3: Encoding of RLC tuple

the Walsh-Hadamard transform of that block results only in the very first coefficient
being non-zero. For an 8× 8 block size, that means 63 trailing zeros, which would
normally have to be encoded using 4 tuples, instead of one.

3.5.2 Zig-Zag Scanning

As discussed in section 3.3.1, the magnitude of the transformed coefficients in gen-
eral decreases with increasing sequency. Simply scanning the transformed coeffi-
cients left to right, top to bottom will therefore not result in scanning the high-
frequency components successively.
In a similar fashion to JPEG and other DCT based video codecs, we scan the trans-
form coefficients in a block in a zig-zag fashion (See Fig. 3.3). In this way, the
coefficients are ordered in order of increasing horizontal and vertical sequencies.
When appropriate quantization is applied to the high-sequency components, scan-
ning in zig-zag fashion is therefore likely to result in a sequence with a substantial
amount of trailing zeros/small coefficients. This can then effectively be compressed
using Run-Level-Coding.

0 1 5 6 14 15 27 28

2 4 7 13 16 26 29 42

3 8 12 17 25 30 41 43

9 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54

20 22 33 38 46 51 55 60

21 34 37 47 50 56 59 61

35 36 48 49 57 58 62 63

Figure 3.3: Zig-zag scanning for a 8× 8 block

31

Chapter 4

Results

4.1 Method

To evaluate the performance of our codec we focus at four aspects:

1. Video quality: video quality will be assessed by calculating the PSNR for the
Y’-plane of every frame. The Y’ plane is chosen since it is visually most im-
portant for us humans (see section 2.1.2.2).

2. Compression ratio: the compression ratio, defined as

Compression ratio =
compressed size
Original size · 100% (4.1)

3. Compression/Decompression speed : the time required by the encoder and de-
coder to compress respectively decompress a single video frame.

4. Reference frames: to evaluate the effectiveness of reference frames, we the per-
centage of P-blocks in every frame will be recorded.

4.1.1 Scenes

In order to produce meaningful results, raw videos are used, such that our encoder
will not have any advantage/disadvantage due to coding artefacts of the video codec
that is used to compress the videofile.
The video samples are two 720p yuv 4:2:0 files from derf ’s collection 1:

1. ParkJoy: a scene having a difficult coding difficulty [35]

2. OldTown: a scene having an easy coding difficulty [35]

Both scenes 500 frames long.
1https://media.xiph.org/video/derf/

32

https://media.xiph.org/video/derf/

4.1.2 Quantizer

The same quantization matrix (defining the step-size) is to be used for both I- and
P-blocks. In order to test the ability of the encoder to compress more at the cost of
reduced video quality, a “high-quality” (eq. (4.2)) and “acceptable-quality” quanti-
zation matrix (eq. (4.3)) are to be used (note how those matrices follow the zig-zag
pattern as in section 3.5.2).
As video-quality is not objective, a subjective trial-and-error method has been used
by the author to determine those matrices. High-quality was considered to be a
video in which small details/colors within macroblocks were not significantly de-
graded. For the acceptable matrix, some significant loss of this small detail within
macroblocks was allowed, but the overall quality should not be severly degraded with
respect to the original video. Note that we focus on detail within a macroblock, since
blocking artefacts at the edges of macroblocks are inevitable when lossy compression
is applied. Due to transforming blockwise, quantization is also performed block-
wise. This means that the sequency components between blocks are not treated in
exactly the same way. This leads to discontinuities at the boundaries. Usually, codecs
apply a deblocking-filter, which smooths out those discontinuities. Our codec how-
ever, does not include such a filter (due to speed-reasons) An example illustrating
the quality degradation related to the the high and acceptable encoding of a frame
can be found in fig. 4.1.



2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 3
2 2 2 2 2 2 3 4
2 2 2 2 2 3 4 5
2 2 2 2 3 4 5 5
2 2 2 3 4 5 5 5
2 2 3 4 5 5 5 5


(4.2)



3 3 3 3 3 3 3 4
3 3 3 3 3 3 4 5
3 3 3 3 3 4 5 6
3 3 3 3 4 5 6 7
2 3 3 4 5 6 7 8
3 3 4 5 6 7 8 9
3 4 5 6 7 8 9 9
4 5 6 7 8 9 9 9


(4.3)

The values in those quantization matrix represent the amount of bits that the corre-
sponding transform coefficients should be shifted to the right to quantize the coef-
ficient. Dequantization is achieved by left-shifting with the same amount of bits.
The deadzone width of the quantizer is 20: all transform coefficients that fall into
the range [−20, 20] are therefore mapped to zero. The amount of P-frames after

33

(a) Original part of the scene (b) High quality encoded part of the scene

(c) Acceptable quality encoded part of the
scene

Figure 4.1: Selection of a frame - Encoded with different qualities

which an I-frame must be inserted (see section 3.4) was set to 10.

The laptop running the codec was a dell xps 13 including 8GB of RAM and an
i5-5200 CPU.

34

4.2 PSNR

The PSNR was calculated for every frame by using the decoded output from our
video codec and the original corresponding frame.

0 100 200 300 400 500
36.2

36.4

36.6

36.8

37

37.2

Frame number

PS
N

R
(d

B)

(a) Old Town - high quality

0 100 200 300 400 500
32.2

32.4

32.6

32.8

33

33.2

33.4

Frame number

PS
N

R
(d

B)

(b) Old Town - acceptable quality

Figure 4.2: PSNR of acceptable and high-quality encoding Old Town

0 100 200 300 400 500
31

32

33

34

35

36

37

Frame number

PS
N

R
(d

B)

(a) ParkJoy - high quality

0 100 200 300 400 500
26

27

28

29

30

31

32

Frame number

PS
N

R
(d

B)

(b) ParkJoy - acceptable quality

Figure 4.3: PSNR of acceptable and high-quality encoding ParkJoy

35

4.3 Compression-ratio

The compression ratio was calculated for every frame according to eq. (4.1).

0 100 200 300 400 500
200

400

600

800

1000

1200

Frame number

C
om

pr
es

sio
ra

tio
(%

)

Y
UV

(a) Old Town - high quality

0 100 200 300 400 500
400

600

800

1000

1200

1400

Frame number

C
om

pr
es

sio
ra

tio
(%

)

Y
UV

(b) Old Town - acceptable quality

Figure 4.4: Compression ratio of high-quality and acceptable encoding of Old
Town

0 100 200 300 400 500
0

200

400

600

800

1000

1200

Frame number

C
om

pr
es

sio
ra

tio
(%

)

Y
UV

(a) ParkJoy - high quality

0 100 200 300 400 500
200

400

600

800

1000

1200

1400

Frame number

C
om

pr
es

sio
ra

tio
(%

)

Y
UV

(b) ParkJoy - acceptable quality

Figure 4.5: Compression ratio of high-quality and acceptable encoding of ParkJoy

36

4.4 Speed

The speedresults are obtained by timing the encoder/decoder for a whole frame,
during the 500 frames of both ParkJoy and Old Town

Encoder times

min (ms) mean (ms) max (ms) total(ms)
14.44 18.04 22.80 9021.04

Decoder times

min (ms) mean (ms) max (ms) total(ms)
8.14 10.97 15.62 5486.64

Table 4.1: Codec time statistics - ParkJoy - high quality

Encoder times

min (ms) mean (ms) max (ms) total(ms)
12.61 16.89 28.22 8444.39

Decoder times

min (ms) mean (ms) max (ms) total(ms)
7.10 9.89 17.74 4945.65

Table 4.2: Codec time statistics - ParkJoy - acceptable quality

Encoder times

min (ms) mean (ms) max (ms) total(ms)
13.03 15.66 23.76 7830.69

Decoder times

min (ms) mean (ms) max (ms) total(ms)
7.41 9.54 15.08 4772.48

Table 4.3: Codec time statistics - old town - high quality

Encoder times

min (ms) mean (ms) max (ms) total(ms)
10.95 14.18 19.32 7091.39

Decoder times

min (ms) mean (ms) max (ms) total(ms)
6.72 8.10 14.28 4050.59

Table 4.4: Codec time statistics - old town - acceptable quality

37

4.5 Percentage P-blocks

The percentage of P-blocks was calculated for every P-block using

PercentageP−blocks = 100% #P-blocks
#blocks in a frame (4.4)

0 100 200 300 400 500
0

20

40

60

80

100

Frame number

Pe
rc

en
ta

ge
of

P-
bl

oc
ks

(%
)

Y
UV

(a) ParkJoy - high quality

0 100 200 300 400 500
0

20

40

60

80

100

Frame number

Pe
rc

en
ta

ge
of

P-
bl

oc
ks

(%
)

Y
UV

(b) ParkJoy - acceptable quality

Figure 4.6: Percentage of P-blocks per frame of high-quality and acceptable encod-
ing of ParkJoy

0 100 200 300 400 500
0

10

20

30

40

50

60

70

Frame number

Pe
rc

en
ta

ge
of

P-
bl

oc
ks

(%
)

Y
UV

(a) Old Town - high quality

0 100 200 300 400 500
0

10

20

30

40

50

60

70

Frame number

Pe
rc

en
ta

ge
of

P-
bl

oc
ks

(%
)

Y
UV

(b) Old Town - acceptable quality

Figure 4.7: Percentage of P-blocks per frame of high-quality and acceptable encod-
ing of Old Town

38

Chapter 5

Discussion

In this chapter we will reflect on the results as presented in ??

5.1 Compression ratio

If we look at fig. 4.4 we observe that the compression ratio of the UV planes is
substantially higher than that of the Y plane. This is also present in fig. 4.5. This is
most likely a result of (even subsampled) the chroma plane having lower frequency
content than the luma plane [28].
We furthermore observe that after every 10 frames, there is a substantial drop in the
compression ratio. This is result of insertion of an I-frame after 10 frames. This effect
is less visible in fig. 4.5. Recall that this scene is considered difficult. The more-or-
less constant compression ratio of the Y-plane can be explained due to the relatively
quick movement in the scene: quick movement causes the difference between to
subsequent frames to be large enough to make the encoder decide to use an I-block
instead of a P-block. Note that from frame 450 onwards we observe a significant
increase in compression ratio in fig. 4.5. This corresponds to the part of the scene in
which the movement stops, hence P-blocks become more attractive for the encoder.
This behaviour is confirmed by fig. 4.6, in which we see an increasing percentage of
P-blocks present in the encoded frames.
Interesting is that when we switch to the acceptable quality matrix, the percentage
of P-blocks decreases in both fig. 4.6 and fig. 4.7. This is not surprising, as coarser
quantization results in a lower PSNR: hence when the encoder takes the difference
of the reference frame (which is the decompressed version of the previous encoded
frame) with the current original frame of the video, the difference is likely to be
higher, than if both frames were taken from the original video.
Furthermore the percentage of P-blocks in the Y and UV plane seems to be strongly
dependent on the scene to be encoded. fig. 4.6 shows an on average slightly higer
percentage of P-blocks in the UV plane, whereas the percentage of P-blocks in
fig. 4.7 is higher for the YV plane.

39

5.2 Quality

Referring to fig. 4.2 we observe a similar pattern as in the compression ratio: after
every ten frames we observe a relatively small increase in the PSNR. This can be ex-
plained due to the use of a deadzone quantizer: since P-blocks are usually employed
when the the coefficients are relatively small, this will result in transform coefficients
that are relatively small as well. A deadzone quantizer will remove most, if not all
of the coefficients if they are small enough.
Observe that this effect in fig. 4.3 is far less noticable, which can again be explained
by ParkJoy containing a lot of movement, making the encoder encode frames using
primarily I-blocks for the Y-plane(see also fig. 4.6).
Furthermore observe that in both figs. 4.2 and 4.3 switching from the high-quality
quantization matrix to the acceptable quantization matrix results in a drop of the
PSNR of approximately 4dB. At the same time, artefacts within macroblocks start
to become significant. This can be seen from fig. 4.1, which shows part of a frame
encoded&decoded with the acceptable quality matrix. Do note the difference with
downsampling: although we see blocks, a block still contains detail.

5.3 Speed

We observe from section 4.4 that the encoder takes around 1.5x more time. This is
due to the encoder having a higher complexity than the decoder (it features a partial
decoder as well, including an inverse transform & dequantizer in the feedback loop,
adding extra complexity (see fig. 2.2).
Note that in order to achieve 30fps, one would need to encode/decode one frame in
1
30 ≈ 33.3ms. Observe that in all cases, the maximum encoding and decoding time
never exceeds the 33.3ms, hence the the decoding/encoding rate always higher than
30fps.

40

Chapter 6

Conclusion

We have observed that the compression ratio of videos encoded by our codec varies
per scene, and varies between frames as well. We therefore fulfill the requirement of
having a variable compression ratio. Important to note as well is that even though
transform coding results in coefficients that use more bits than the untransformed
coefficients, we obtain compression ratios as high as 700% for the Y’-plane and close
to 1300% for the UV planes.
As a result of using a block-transform in our codec, we automatically fulfill the
requirement of emulation of macro-block behaviour. Our results also confirm that
our codec exhibits the coding artefacts associated with macroblocking (??).
Furthermore, our results in section 4.2 confirm that the obtained quality is accept-
able (> 20dB) and that our encoder and decoder manage to run at 30 fps seperately.
Hence we can claim fulfillment of acceptable quality of a 720p at 30 fps.
As of now, the codec however does not support on the fly resolution changing, nor
does it support stateless codec emulation. It has been decided not to include this
into the codec yet, due to the limited-time available. Therefore, all except these
requirements as stated in chapter 1 are met.

6.1 Future Work

1. Treat the first walsh-hadamard coefficient differently from the others. As [20]
points out, the range of the other coefficients is only halve that of the first
coefficient (hence we could save a bit per encoded coefficient).

2. Integrate the codec into the linux kernel: at the time of writing this report
the codec is not yet integrated into the Linux kernel. However, this involves
a few minor adjustments to the code and adding support for

(a) State- and stateless-codecs.
(b) On-the-fly resolution changing.

41

Which should not be very time-consuming tasks. As of the moment that this
report was written, the author has already planned on doing so, outside the
scope of this project.

42

Bibliography

[1] Wikipedia, “Video codec — wikipedia, the free encyclopedia,” 2016. [Online;
accessed 14-October-2016].

[2] E. Reinhard, E. A. Khan, A. O. Akyuz, and G. Johnson, Color imaging: fun-
damentals and applications. CRC Press, 2008.

[3] A. Ford and A. Roberts, “Colour space conversions,” Westminster University,
London, vol. 1998, pp. 1–31, 1998.

[4] D. R. Bull, Communicating pictures: A course in Image and Video Coding. Aca-
demic Press, 2014.

[5] I. E. Richardson, H. 264 and MPEG-4 video compression: video coding for next-
generation multimedia. John Wiley & Sons, 2004.

[6] A. C. Bovik, Handbook of image and video processing. Academic press, 2010.

[7] C. Poynton, Digital video and HD: Algorithms and Interfaces. Elsevier, 2012.

[8] M. C. Rost, Data compression using adaptive transform coding. PhD thesis,
NASA, 1988.

[9] L. Torres and M. Kunt, Video coding: the second generation approach. Springer
Science & Business Media, 2012.

[10] J. F. Blinn, “What’s that deal with the dct?,” IEEE Computer Graphics and
Applications, vol. 13, pp. 78–83, July 1993.

[11] I. E. Richardson, Video codec design: developing image and video compression sys-
tems. John Wiley & Sons, 2002.

[12] M. Ghanbari, Standard codecs: Image compression to advanced video coding.
No. 49, Iet, 2003.

[13] X. Foundation, “Theora specification,” Mar. 2011.

[14] I. E. T. Force, “Thor: High efficiency, moderate complexity video codec using
only rf ipr,” July 2015.

43

[15] J. Bankoski, P. Wilkins, and Y. Xu, “Technical overview of vp8, an open source
video codec for the web.,”

[16] B. G. Haskell and A. N. Netravali, Digital pictures: representation, compression,
and standards. Perseus Publishing, 1997.

[17] R. C. Gonzalez and R. E. Woods, “Digital image processing publishing house
of electronics industry,” Beijing, China, p. 262, 2002.

[18] K. R. Rao and P. C. Yip, The transform and data compression handbook, vol. 1.
CRC press, 2000.

[19] R. D. Brown, “A recursive algorithm for sequency-ordered fast walsh trans-
forms,” IEEE Transactions on Computers, vol. C-26, pp. 819–822, Aug 1977.

[20] W. K. Pratt, J. Kane, and H. C. Andrews, “Hadamard transform image cod-
ing,” Proceedings of the IEEE, vol. 57, pp. 58–68, Jan 1969.

[21] J.-M. Valin and T. B. Terriberry, “Perceptual vector quantization for video
coding,” in SPIE/IS&T Electronic Imaging, pp. 941009–941009, International
Society for Optics and Photonics, 2015.

[22] A. M. Bock, Video Compression Systems: From first principles to concatenated
codecs. IET Digital Library, 2009.

[23] I. Chakrabarti, K. N. S. Batta, and S. K. Chatterjee, Motion Estimation for
Video Coding. Springer, 2015.

[24] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan, C. Kozyrakis, and M. A.
Horowitz, “Convolution engine: balancing efficiency & flexibility in special-
ized computing,” in ACM SIGARCH Computer Architecture News, vol. 41,
pp. 24–35, ACM, 2013.

[25] J. Kleinberg and E. Tardos, Algorithm design. Pearson Education India, 2006.

[26] P. Kube, “Huffman’s algorithm pseudocode.” Accessed: 2016-11-03.

[27] G. G. Langdon, “An introduction to arithmetic coding,” IBM Journal of Re-
search and Development, vol. 28, no. 2, pp. 135–149, 1984.

[28] B. Waggoner, Compression for great video and audio: master tips and common
sense. Taylor & Francis, 2010.

[29] A. Shahbahrami, R. Bahrampour, M. S. Rostami, and M. A. Mobarhan,
“Evaluation of huffman and arithmetic algorithms for multimedia compres-
sion standards,” arXiv preprint arXiv:1109.0216, 2011.

[30] Z. Wang, H. R. Sheikh, and A. C. Bovik, “Objective video quality assess-
ment,” The handbook of video databases: design and applications, pp. 1041–1078,
2003.

44

[31] A. Kondoz, Visual media coding and transmission. John Wiley & Sons, 2009.

[32] “35 u.s. code § 154 - contents and term of patent; provisional rights.” Accessed:
06-11-16.

[33] J. Manz, “A sequency-ordered fast walsh transform,” IEEE Transactions on
Audio and Electroacoustics, vol. 20, no. 3, pp. 204–205, 1972.

[34] H. Larsen, “An algorithm to compute the sequency ordered walsh transform,”
1976.

[35] L. Haglund, “The svt high definition multi format test set,” Swedish Television
Stockholm, 2006.

45

	Introduction
	Motivation
	Problem statement & Project goals
	Requirements
	Overview

	Background
	Introduction
	Video Frames
	Color space

	Macro-blocks
	Video-Codec
	Transform coding
	Some block-transforms in video-codecs
	Block-Transform coding

	Quantization
	Uniform Quantization

	Motion Compensation & Motion Estimation
	Introduction

	Entropy Coding
	Run-length encoding & Run level coding
	Huffman coding
	Arithmetic coding

	Video-quality
	PSNR

	Design of a new video codec
	Method
	Overview of codecs
	Patents/Open codecs

	Transform
	Walsh-Hadamard Transform

	Video frames
	Frame types

	Entropy coding
	Dead-zone quantization & RLC
	Zig-Zag Scanning

	Results
	Method
	Scenes
	Quantizer

	PSNR
	Compression-ratio
	Speed
	Percentage P-blocks

	Discussion
	Compression ratio
	Quality
	Speed

	Conclusion
	Future Work

